[1] | 1 | package agents.Jama;
|
---|
| 2 | import agents.Jama.util.*;
|
---|
| 3 |
|
---|
| 4 | /** QR Decomposition.
|
---|
| 5 | <P>
|
---|
| 6 | For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
|
---|
| 7 | orthogonal matrix Q and an n-by-n upper triangular matrix R so that
|
---|
| 8 | A = Q*R.
|
---|
| 9 | <P>
|
---|
| 10 | The QR decompostion always exists, even if the matrix does not have
|
---|
| 11 | full rank, so the constructor will never fail. The primary use of the
|
---|
| 12 | QR decomposition is in the least squares solution of nonsquare systems
|
---|
| 13 | of simultaneous linear equations. This will fail if isFullRank()
|
---|
| 14 | returns false.
|
---|
| 15 | */
|
---|
| 16 |
|
---|
| 17 | public class QRDecomposition implements java.io.Serializable {
|
---|
| 18 |
|
---|
| 19 | /* ------------------------
|
---|
| 20 | Class variables
|
---|
| 21 | * ------------------------ */
|
---|
| 22 |
|
---|
| 23 | /** Array for internal storage of decomposition.
|
---|
| 24 | @serial internal array storage.
|
---|
| 25 | */
|
---|
| 26 | private double[][] QR;
|
---|
| 27 |
|
---|
| 28 | /** Row and column dimensions.
|
---|
| 29 | @serial column dimension.
|
---|
| 30 | @serial row dimension.
|
---|
| 31 | */
|
---|
| 32 | private int m, n;
|
---|
| 33 |
|
---|
| 34 | /** Array for internal storage of diagonal of R.
|
---|
| 35 | @serial diagonal of R.
|
---|
| 36 | */
|
---|
| 37 | private double[] Rdiag;
|
---|
| 38 |
|
---|
| 39 | /* ------------------------
|
---|
| 40 | Constructor
|
---|
| 41 | * ------------------------ */
|
---|
| 42 |
|
---|
| 43 | /** QR Decomposition, computed by Householder reflections.
|
---|
| 44 | Structure to access R and the Householder vectors and compute Q.
|
---|
| 45 | @param A Rectangular matrix
|
---|
| 46 | */
|
---|
| 47 |
|
---|
| 48 | public QRDecomposition (Matrix A) {
|
---|
| 49 | // Initialize.
|
---|
| 50 | QR = A.getArrayCopy();
|
---|
| 51 | m = A.getRowDimension();
|
---|
| 52 | n = A.getColumnDimension();
|
---|
| 53 | Rdiag = new double[n];
|
---|
| 54 |
|
---|
| 55 | // Main loop.
|
---|
| 56 | for (int k = 0; k < n; k++) {
|
---|
| 57 | // Compute 2-norm of k-th column without under/overflow.
|
---|
| 58 | double nrm = 0;
|
---|
| 59 | for (int i = k; i < m; i++) {
|
---|
| 60 | nrm = Maths.hypot(nrm,QR[i][k]);
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | if (nrm != 0.0) {
|
---|
| 64 | // Form k-th Householder vector.
|
---|
| 65 | if (QR[k][k] < 0) {
|
---|
| 66 | nrm = -nrm;
|
---|
| 67 | }
|
---|
| 68 | for (int i = k; i < m; i++) {
|
---|
| 69 | QR[i][k] /= nrm;
|
---|
| 70 | }
|
---|
| 71 | QR[k][k] += 1.0;
|
---|
| 72 |
|
---|
| 73 | // Apply transformation to remaining columns.
|
---|
| 74 | for (int j = k+1; j < n; j++) {
|
---|
| 75 | double s = 0.0;
|
---|
| 76 | for (int i = k; i < m; i++) {
|
---|
| 77 | s += QR[i][k]*QR[i][j];
|
---|
| 78 | }
|
---|
| 79 | s = -s/QR[k][k];
|
---|
| 80 | for (int i = k; i < m; i++) {
|
---|
| 81 | QR[i][j] += s*QR[i][k];
|
---|
| 82 | }
|
---|
| 83 | }
|
---|
| 84 | }
|
---|
| 85 | Rdiag[k] = -nrm;
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | /* ------------------------
|
---|
| 90 | Public Methods
|
---|
| 91 | * ------------------------ */
|
---|
| 92 |
|
---|
| 93 | /** Is the matrix full rank?
|
---|
| 94 | @return true if R, and hence A, has full rank.
|
---|
| 95 | */
|
---|
| 96 |
|
---|
| 97 | public boolean isFullRank () {
|
---|
| 98 | for (int j = 0; j < n; j++) {
|
---|
| 99 | if (Rdiag[j] == 0)
|
---|
| 100 | return false;
|
---|
| 101 | }
|
---|
| 102 | return true;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | /** Return the Householder vectors
|
---|
| 106 | @return Lower trapezoidal matrix whose columns define the reflections
|
---|
| 107 | */
|
---|
| 108 |
|
---|
| 109 | public Matrix getH () {
|
---|
| 110 | Matrix X = new Matrix(m,n);
|
---|
| 111 | double[][] H = X.getArray();
|
---|
| 112 | for (int i = 0; i < m; i++) {
|
---|
| 113 | for (int j = 0; j < n; j++) {
|
---|
| 114 | if (i >= j) {
|
---|
| 115 | H[i][j] = QR[i][j];
|
---|
| 116 | } else {
|
---|
| 117 | H[i][j] = 0.0;
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 | }
|
---|
| 121 | return X;
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | /** Return the upper triangular factor
|
---|
| 125 | @return R
|
---|
| 126 | */
|
---|
| 127 |
|
---|
| 128 | public Matrix getR () {
|
---|
| 129 | Matrix X = new Matrix(n,n);
|
---|
| 130 | double[][] R = X.getArray();
|
---|
| 131 | for (int i = 0; i < n; i++) {
|
---|
| 132 | for (int j = 0; j < n; j++) {
|
---|
| 133 | if (i < j) {
|
---|
| 134 | R[i][j] = QR[i][j];
|
---|
| 135 | } else if (i == j) {
|
---|
| 136 | R[i][j] = Rdiag[i];
|
---|
| 137 | } else {
|
---|
| 138 | R[i][j] = 0.0;
|
---|
| 139 | }
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
| 142 | return X;
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | /** Generate and return the (economy-sized) orthogonal factor
|
---|
| 146 | @return Q
|
---|
| 147 | */
|
---|
| 148 |
|
---|
| 149 | public Matrix getQ () {
|
---|
| 150 | Matrix X = new Matrix(m,n);
|
---|
| 151 | double[][] Q = X.getArray();
|
---|
| 152 | for (int k = n-1; k >= 0; k--) {
|
---|
| 153 | for (int i = 0; i < m; i++) {
|
---|
| 154 | Q[i][k] = 0.0;
|
---|
| 155 | }
|
---|
| 156 | Q[k][k] = 1.0;
|
---|
| 157 | for (int j = k; j < n; j++) {
|
---|
| 158 | if (QR[k][k] != 0) {
|
---|
| 159 | double s = 0.0;
|
---|
| 160 | for (int i = k; i < m; i++) {
|
---|
| 161 | s += QR[i][k]*Q[i][j];
|
---|
| 162 | }
|
---|
| 163 | s = -s/QR[k][k];
|
---|
| 164 | for (int i = k; i < m; i++) {
|
---|
| 165 | Q[i][j] += s*QR[i][k];
|
---|
| 166 | }
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 | }
|
---|
| 170 | return X;
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | /** Least squares solution of A*X = B
|
---|
| 174 | @param B A Matrix with as many rows as A and any number of columns.
|
---|
| 175 | @return X that minimizes the two norm of Q*R*X-B.
|
---|
| 176 | @exception IllegalArgumentException Matrix row dimensions must agree.
|
---|
| 177 | @exception RuntimeException Matrix is rank deficient.
|
---|
| 178 | */
|
---|
| 179 |
|
---|
| 180 | public Matrix solve (Matrix B) {
|
---|
| 181 | if (B.getRowDimension() != m) {
|
---|
| 182 | throw new IllegalArgumentException("Matrix row dimensions must agree.");
|
---|
| 183 | }
|
---|
| 184 | if (!this.isFullRank()) {
|
---|
| 185 | throw new RuntimeException("Matrix is rank deficient.");
|
---|
| 186 | }
|
---|
| 187 |
|
---|
| 188 | // Copy right hand side
|
---|
| 189 | int nx = B.getColumnDimension();
|
---|
| 190 | double[][] X = B.getArrayCopy();
|
---|
| 191 |
|
---|
| 192 | // Compute Y = transpose(Q)*B
|
---|
| 193 | for (int k = 0; k < n; k++) {
|
---|
| 194 | for (int j = 0; j < nx; j++) {
|
---|
| 195 | double s = 0.0;
|
---|
| 196 | for (int i = k; i < m; i++) {
|
---|
| 197 | s += QR[i][k]*X[i][j];
|
---|
| 198 | }
|
---|
| 199 | s = -s/QR[k][k];
|
---|
| 200 | for (int i = k; i < m; i++) {
|
---|
| 201 | X[i][j] += s*QR[i][k];
|
---|
| 202 | }
|
---|
| 203 | }
|
---|
| 204 | }
|
---|
| 205 | // Solve R*X = Y;
|
---|
| 206 | for (int k = n-1; k >= 0; k--) {
|
---|
| 207 | for (int j = 0; j < nx; j++) {
|
---|
| 208 | X[k][j] /= Rdiag[k];
|
---|
| 209 | }
|
---|
| 210 | for (int i = 0; i < k; i++) {
|
---|
| 211 | for (int j = 0; j < nx; j++) {
|
---|
| 212 | X[i][j] -= X[k][j]*QR[i][k];
|
---|
| 213 | }
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 | return (new Matrix(X,n,nx).getMatrix(0,n-1,0,nx-1));
|
---|
| 217 | }
|
---|
| 218 | private static final long serialVersionUID = 1;
|
---|
| 219 | }
|
---|