[1] | 1 | package agents.Jama;
|
---|
| 2 |
|
---|
| 3 | import java.text.NumberFormat;
|
---|
| 4 | import java.text.DecimalFormat;
|
---|
| 5 | import java.text.DecimalFormatSymbols;
|
---|
| 6 | import java.util.Locale;
|
---|
| 7 |
|
---|
| 8 | import agents.Jama.util.*;
|
---|
| 9 |
|
---|
| 10 | import java.text.FieldPosition;
|
---|
| 11 | import java.io.PrintWriter;
|
---|
| 12 | import java.io.BufferedReader;
|
---|
| 13 | import java.io.StreamTokenizer;
|
---|
| 14 |
|
---|
| 15 | /**
|
---|
| 16 | Jama = Java Matrix class.
|
---|
| 17 | <P>
|
---|
| 18 | The Java Matrix Class provides the fundamental operations of numerical
|
---|
| 19 | linear algebra. Various constructors create Matrices from two dimensional
|
---|
| 20 | arrays of double precision floating point numbers. Various "gets" and
|
---|
| 21 | "sets" provide access to submatrices and matrix elements. Several methods
|
---|
| 22 | implement basic matrix arithmetic, including matrix addition and
|
---|
| 23 | multiplication, matrix norms, and element-by-element array operations.
|
---|
| 24 | Methods for reading and printing matrices are also included. All the
|
---|
| 25 | operations in this version of the Matrix Class involve real matrices.
|
---|
| 26 | Complex matrices may be handled in a future version.
|
---|
| 27 | <P>
|
---|
| 28 | Five fundamental matrix decompositions, which consist of pairs or triples
|
---|
| 29 | of matrices, permutation vectors, and the like, produce results in five
|
---|
| 30 | decomposition classes. These decompositions are accessed by the Matrix
|
---|
| 31 | class to compute solutions of simultaneous linear equations, determinants,
|
---|
| 32 | inverses and other matrix functions. The five decompositions are:
|
---|
| 33 | <P><UL>
|
---|
| 34 | <LI>Cholesky Decomposition of symmetric, positive definite matrices.
|
---|
| 35 | <LI>LU Decomposition of rectangular matrices.
|
---|
| 36 | <LI>QR Decomposition of rectangular matrices.
|
---|
| 37 | <LI>Singular Value Decomposition of rectangular matrices.
|
---|
| 38 | <LI>Eigenvalue Decomposition of both symmetric and nonsymmetric square matrices.
|
---|
| 39 | </UL>
|
---|
| 40 | <DL>
|
---|
| 41 | <DT><B>Example of use:</B></DT>
|
---|
| 42 | <P>
|
---|
| 43 | <DD>Solve a linear system A x = b and compute the residual norm, ||b - A x||.
|
---|
| 44 | <P><PRE>
|
---|
| 45 | double[][] vals = {{1.,2.,3},{4.,5.,6.},{7.,8.,10.}};
|
---|
| 46 | Matrix A = new Matrix(vals);
|
---|
| 47 | Matrix b = Matrix.random(3,1);
|
---|
| 48 | Matrix x = A.solve(b);
|
---|
| 49 | Matrix r = A.times(x).minus(b);
|
---|
| 50 | double rnorm = r.normInf();
|
---|
| 51 | </PRE></DD>
|
---|
| 52 | </DL>
|
---|
| 53 |
|
---|
| 54 | @author The MathWorks, Inc. and the National Institute of Standards and Technology.
|
---|
| 55 | @version 5 August 1998
|
---|
| 56 | */
|
---|
| 57 |
|
---|
| 58 | public class Matrix implements Cloneable, java.io.Serializable {
|
---|
| 59 |
|
---|
| 60 | /* ------------------------
|
---|
| 61 | Class variables
|
---|
| 62 | * ------------------------ */
|
---|
| 63 |
|
---|
| 64 | /** Array for internal storage of elements.
|
---|
| 65 | @serial internal array storage.
|
---|
| 66 | */
|
---|
| 67 | private double[][] A;
|
---|
| 68 |
|
---|
| 69 | /** Row and column dimensions.
|
---|
| 70 | @serial row dimension.
|
---|
| 71 | @serial column dimension.
|
---|
| 72 | */
|
---|
| 73 | private int m, n;
|
---|
| 74 |
|
---|
| 75 | /* ------------------------
|
---|
| 76 | Constructors
|
---|
| 77 | * ------------------------ */
|
---|
| 78 |
|
---|
| 79 | /** Construct an m-by-n matrix of zeros.
|
---|
| 80 | @param m Number of rows.
|
---|
| 81 | @param n Number of colums.
|
---|
| 82 | */
|
---|
| 83 |
|
---|
| 84 | public Matrix (int m, int n) {
|
---|
| 85 | this.m = m;
|
---|
| 86 | this.n = n;
|
---|
| 87 | A = new double[m][n];
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | /** Construct an m-by-n constant matrix.
|
---|
| 91 | @param m Number of rows.
|
---|
| 92 | @param n Number of colums.
|
---|
| 93 | @param s Fill the matrix with this scalar value.
|
---|
| 94 | */
|
---|
| 95 |
|
---|
| 96 | public Matrix (int m, int n, double s) {
|
---|
| 97 | this.m = m;
|
---|
| 98 | this.n = n;
|
---|
| 99 | A = new double[m][n];
|
---|
| 100 | for (int i = 0; i < m; i++) {
|
---|
| 101 | for (int j = 0; j < n; j++) {
|
---|
| 102 | A[i][j] = s;
|
---|
| 103 | }
|
---|
| 104 | }
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | /** Construct a matrix from a 2-D array.
|
---|
| 108 | @param A Two-dimensional array of doubles.
|
---|
| 109 | @exception IllegalArgumentException All rows must have the same length
|
---|
| 110 | @see #constructWithCopy
|
---|
| 111 | */
|
---|
| 112 |
|
---|
| 113 | public Matrix (double[][] A) {
|
---|
| 114 | m = A.length;
|
---|
| 115 | n = A[0].length;
|
---|
| 116 | for (int i = 0; i < m; i++) {
|
---|
| 117 | if (A[i].length != n) {
|
---|
| 118 | throw new IllegalArgumentException("All rows must have the same length.");
|
---|
| 119 | }
|
---|
| 120 | }
|
---|
| 121 | this.A = A;
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | /** Construct a matrix quickly without checking arguments.
|
---|
| 125 | @param A Two-dimensional array of doubles.
|
---|
| 126 | @param m Number of rows.
|
---|
| 127 | @param n Number of colums.
|
---|
| 128 | */
|
---|
| 129 |
|
---|
| 130 | public Matrix (double[][] A, int m, int n) {
|
---|
| 131 | this.A = A;
|
---|
| 132 | this.m = m;
|
---|
| 133 | this.n = n;
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | /** Construct a matrix from a one-dimensional packed array
|
---|
| 137 | @param vals One-dimensional array of doubles, packed by columns (ala Fortran).
|
---|
| 138 | @param m Number of rows.
|
---|
| 139 | @exception IllegalArgumentException Array length must be a multiple of m.
|
---|
| 140 | */
|
---|
| 141 |
|
---|
| 142 | public Matrix (double vals[], int m) {
|
---|
| 143 | this.m = m;
|
---|
| 144 | n = (m != 0 ? vals.length/m : 0);
|
---|
| 145 | if (m*n != vals.length) {
|
---|
| 146 | throw new IllegalArgumentException("Array length must be a multiple of m.");
|
---|
| 147 | }
|
---|
| 148 | A = new double[m][n];
|
---|
| 149 | for (int i = 0; i < m; i++) {
|
---|
| 150 | for (int j = 0; j < n; j++) {
|
---|
| 151 | A[i][j] = vals[i+j*m];
|
---|
| 152 | }
|
---|
| 153 | }
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | /* ------------------------
|
---|
| 157 | Public Methods
|
---|
| 158 | * ------------------------ */
|
---|
| 159 |
|
---|
| 160 | /** Construct a matrix from a copy of a 2-D array.
|
---|
| 161 | @param A Two-dimensional array of doubles.
|
---|
| 162 | @exception IllegalArgumentException All rows must have the same length
|
---|
| 163 | */
|
---|
| 164 |
|
---|
| 165 | public static Matrix constructWithCopy(double[][] A) {
|
---|
| 166 | int m = A.length;
|
---|
| 167 | int n = A[0].length;
|
---|
| 168 | Matrix X = new Matrix(m,n);
|
---|
| 169 | double[][] C = X.getArray();
|
---|
| 170 | for (int i = 0; i < m; i++) {
|
---|
| 171 | if (A[i].length != n) {
|
---|
| 172 | throw new IllegalArgumentException
|
---|
| 173 | ("All rows must have the same length.");
|
---|
| 174 | }
|
---|
| 175 | for (int j = 0; j < n; j++) {
|
---|
| 176 | C[i][j] = A[i][j];
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 | return X;
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | /** Make a deep copy of a matrix
|
---|
| 183 | */
|
---|
| 184 |
|
---|
| 185 | public Matrix copy () {
|
---|
| 186 | Matrix X = new Matrix(m,n);
|
---|
| 187 | double[][] C = X.getArray();
|
---|
| 188 | for (int i = 0; i < m; i++) {
|
---|
| 189 | for (int j = 0; j < n; j++) {
|
---|
| 190 | C[i][j] = A[i][j];
|
---|
| 191 | }
|
---|
| 192 | }
|
---|
| 193 | return X;
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | /** Clone the Matrix object.
|
---|
| 197 | */
|
---|
| 198 |
|
---|
| 199 | public Object clone () {
|
---|
| 200 | return this.copy();
|
---|
| 201 | }
|
---|
| 202 |
|
---|
| 203 | /** Access the internal two-dimensional array.
|
---|
| 204 | @return Pointer to the two-dimensional array of matrix elements.
|
---|
| 205 | */
|
---|
| 206 |
|
---|
| 207 | public double[][] getArray () {
|
---|
| 208 | return A;
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | /** Copy the internal two-dimensional array.
|
---|
| 212 | @return Two-dimensional array copy of matrix elements.
|
---|
| 213 | */
|
---|
| 214 |
|
---|
| 215 | public double[][] getArrayCopy () {
|
---|
| 216 | double[][] C = new double[m][n];
|
---|
| 217 | for (int i = 0; i < m; i++) {
|
---|
| 218 | for (int j = 0; j < n; j++) {
|
---|
| 219 | C[i][j] = A[i][j];
|
---|
| 220 | }
|
---|
| 221 | }
|
---|
| 222 | return C;
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | /** Make a one-dimensional column packed copy of the internal array.
|
---|
| 226 | @return Matrix elements packed in a one-dimensional array by columns.
|
---|
| 227 | */
|
---|
| 228 |
|
---|
| 229 | public double[] getColumnPackedCopy () {
|
---|
| 230 | double[] vals = new double[m*n];
|
---|
| 231 | for (int i = 0; i < m; i++) {
|
---|
| 232 | for (int j = 0; j < n; j++) {
|
---|
| 233 | vals[i+j*m] = A[i][j];
|
---|
| 234 | }
|
---|
| 235 | }
|
---|
| 236 | return vals;
|
---|
| 237 | }
|
---|
| 238 |
|
---|
| 239 | /** Make a one-dimensional row packed copy of the internal array.
|
---|
| 240 | @return Matrix elements packed in a one-dimensional array by rows.
|
---|
| 241 | */
|
---|
| 242 |
|
---|
| 243 | public double[] getRowPackedCopy () {
|
---|
| 244 | double[] vals = new double[m*n];
|
---|
| 245 | for (int i = 0; i < m; i++) {
|
---|
| 246 | for (int j = 0; j < n; j++) {
|
---|
| 247 | vals[i*n+j] = A[i][j];
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
| 250 | return vals;
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 | /** Get row dimension.
|
---|
| 254 | @return m, the number of rows.
|
---|
| 255 | */
|
---|
| 256 |
|
---|
| 257 | public int getRowDimension () {
|
---|
| 258 | return m;
|
---|
| 259 | }
|
---|
| 260 |
|
---|
| 261 | /** Get column dimension.
|
---|
| 262 | @return n, the number of columns.
|
---|
| 263 | */
|
---|
| 264 |
|
---|
| 265 | public int getColumnDimension () {
|
---|
| 266 | return n;
|
---|
| 267 | }
|
---|
| 268 |
|
---|
| 269 | /** Get a single element.
|
---|
| 270 | @param i Row index.
|
---|
| 271 | @param j Column index.
|
---|
| 272 | @return A(i,j)
|
---|
| 273 | @exception ArrayIndexOutOfBoundsException
|
---|
| 274 | */
|
---|
| 275 |
|
---|
| 276 | public double get (int i, int j) {
|
---|
| 277 | return A[i][j];
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | /** Get a submatrix.
|
---|
| 281 | @param i0 Initial row index
|
---|
| 282 | @param i1 Final row index
|
---|
| 283 | @param j0 Initial column index
|
---|
| 284 | @param j1 Final column index
|
---|
| 285 | @return A(i0:i1,j0:j1)
|
---|
| 286 | @exception ArrayIndexOutOfBoundsException Submatrix indices
|
---|
| 287 | */
|
---|
| 288 |
|
---|
| 289 | public Matrix getMatrix (int i0, int i1, int j0, int j1) {
|
---|
| 290 | Matrix X = new Matrix(i1-i0+1,j1-j0+1);
|
---|
| 291 | double[][] B = X.getArray();
|
---|
| 292 | try {
|
---|
| 293 | for (int i = i0; i <= i1; i++) {
|
---|
| 294 | for (int j = j0; j <= j1; j++) {
|
---|
| 295 | B[i-i0][j-j0] = A[i][j];
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 | } catch(ArrayIndexOutOfBoundsException e) {
|
---|
| 299 | throw new ArrayIndexOutOfBoundsException("Submatrix indices");
|
---|
| 300 | }
|
---|
| 301 | return X;
|
---|
| 302 | }
|
---|
| 303 |
|
---|
| 304 | /** Get a submatrix.
|
---|
| 305 | @param r Array of row indices.
|
---|
| 306 | @param c Array of column indices.
|
---|
| 307 | @return A(r(:),c(:))
|
---|
| 308 | @exception ArrayIndexOutOfBoundsException Submatrix indices
|
---|
| 309 | */
|
---|
| 310 |
|
---|
| 311 | public Matrix getMatrix (int[] r, int[] c) {
|
---|
| 312 | Matrix X = new Matrix(r.length,c.length);
|
---|
| 313 | double[][] B = X.getArray();
|
---|
| 314 | try {
|
---|
| 315 | for (int i = 0; i < r.length; i++) {
|
---|
| 316 | for (int j = 0; j < c.length; j++) {
|
---|
| 317 | B[i][j] = A[r[i]][c[j]];
|
---|
| 318 | }
|
---|
| 319 | }
|
---|
| 320 | } catch(ArrayIndexOutOfBoundsException e) {
|
---|
| 321 | throw new ArrayIndexOutOfBoundsException("Submatrix indices");
|
---|
| 322 | }
|
---|
| 323 | return X;
|
---|
| 324 | }
|
---|
| 325 |
|
---|
| 326 | /** Get a submatrix.
|
---|
| 327 | @param i0 Initial row index
|
---|
| 328 | @param i1 Final row index
|
---|
| 329 | @param c Array of column indices.
|
---|
| 330 | @return A(i0:i1,c(:))
|
---|
| 331 | @exception ArrayIndexOutOfBoundsException Submatrix indices
|
---|
| 332 | */
|
---|
| 333 |
|
---|
| 334 | public Matrix getMatrix (int i0, int i1, int[] c) {
|
---|
| 335 | Matrix X = new Matrix(i1-i0+1,c.length);
|
---|
| 336 | double[][] B = X.getArray();
|
---|
| 337 | try {
|
---|
| 338 | for (int i = i0; i <= i1; i++) {
|
---|
| 339 | for (int j = 0; j < c.length; j++) {
|
---|
| 340 | B[i-i0][j] = A[i][c[j]];
|
---|
| 341 | }
|
---|
| 342 | }
|
---|
| 343 | } catch(ArrayIndexOutOfBoundsException e) {
|
---|
| 344 | throw new ArrayIndexOutOfBoundsException("Submatrix indices");
|
---|
| 345 | }
|
---|
| 346 | return X;
|
---|
| 347 | }
|
---|
| 348 |
|
---|
| 349 | /** Get a submatrix.
|
---|
| 350 | @param r Array of row indices.
|
---|
| 351 | @param j0 Initial column index
|
---|
| 352 | @param j1 Final column index
|
---|
| 353 | @return A(r(:),j0:j1)
|
---|
| 354 | @exception ArrayIndexOutOfBoundsException Submatrix indices
|
---|
| 355 | */
|
---|
| 356 |
|
---|
| 357 | public Matrix getMatrix (int[] r, int j0, int j1) {
|
---|
| 358 | Matrix X = new Matrix(r.length,j1-j0+1);
|
---|
| 359 | double[][] B = X.getArray();
|
---|
| 360 | try {
|
---|
| 361 | for (int i = 0; i < r.length; i++) {
|
---|
| 362 | for (int j = j0; j <= j1; j++) {
|
---|
| 363 | B[i][j-j0] = A[r[i]][j];
|
---|
| 364 | }
|
---|
| 365 | }
|
---|
| 366 | } catch(ArrayIndexOutOfBoundsException e) {
|
---|
| 367 | throw new ArrayIndexOutOfBoundsException("Submatrix indices");
|
---|
| 368 | }
|
---|
| 369 | return X;
|
---|
| 370 | }
|
---|
| 371 |
|
---|
| 372 | /** Set a single element.
|
---|
| 373 | @param i Row index.
|
---|
| 374 | @param j Column index.
|
---|
| 375 | @param s A(i,j).
|
---|
| 376 | @exception ArrayIndexOutOfBoundsException
|
---|
| 377 | */
|
---|
| 378 |
|
---|
| 379 | public void set (int i, int j, double s) {
|
---|
| 380 | A[i][j] = s;
|
---|
| 381 | }
|
---|
| 382 |
|
---|
| 383 | /** Set a submatrix.
|
---|
| 384 | @param i0 Initial row index
|
---|
| 385 | @param i1 Final row index
|
---|
| 386 | @param j0 Initial column index
|
---|
| 387 | @param j1 Final column index
|
---|
| 388 | @param X A(i0:i1,j0:j1)
|
---|
| 389 | @exception ArrayIndexOutOfBoundsException Submatrix indices
|
---|
| 390 | */
|
---|
| 391 |
|
---|
| 392 | public void setMatrix (int i0, int i1, int j0, int j1, Matrix X) {
|
---|
| 393 | try {
|
---|
| 394 | for (int i = i0; i <= i1; i++) {
|
---|
| 395 | for (int j = j0; j <= j1; j++) {
|
---|
| 396 | A[i][j] = X.get(i-i0,j-j0);
|
---|
| 397 | }
|
---|
| 398 | }
|
---|
| 399 | } catch(ArrayIndexOutOfBoundsException e) {
|
---|
| 400 | throw new ArrayIndexOutOfBoundsException("Submatrix indices");
|
---|
| 401 | }
|
---|
| 402 | }
|
---|
| 403 |
|
---|
| 404 | /** Set a submatrix.
|
---|
| 405 | @param r Array of row indices.
|
---|
| 406 | @param c Array of column indices.
|
---|
| 407 | @param X A(r(:),c(:))
|
---|
| 408 | @exception ArrayIndexOutOfBoundsException Submatrix indices
|
---|
| 409 | */
|
---|
| 410 |
|
---|
| 411 | public void setMatrix (int[] r, int[] c, Matrix X) {
|
---|
| 412 | try {
|
---|
| 413 | for (int i = 0; i < r.length; i++) {
|
---|
| 414 | for (int j = 0; j < c.length; j++) {
|
---|
| 415 | A[r[i]][c[j]] = X.get(i,j);
|
---|
| 416 | }
|
---|
| 417 | }
|
---|
| 418 | } catch(ArrayIndexOutOfBoundsException e) {
|
---|
| 419 | throw new ArrayIndexOutOfBoundsException("Submatrix indices");
|
---|
| 420 | }
|
---|
| 421 | }
|
---|
| 422 |
|
---|
| 423 | /** Set a submatrix.
|
---|
| 424 | @param r Array of row indices.
|
---|
| 425 | @param j0 Initial column index
|
---|
| 426 | @param j1 Final column index
|
---|
| 427 | @param X A(r(:),j0:j1)
|
---|
| 428 | @exception ArrayIndexOutOfBoundsException Submatrix indices
|
---|
| 429 | */
|
---|
| 430 |
|
---|
| 431 | public void setMatrix (int[] r, int j0, int j1, Matrix X) {
|
---|
| 432 | try {
|
---|
| 433 | for (int i = 0; i < r.length; i++) {
|
---|
| 434 | for (int j = j0; j <= j1; j++) {
|
---|
| 435 | A[r[i]][j] = X.get(i,j-j0);
|
---|
| 436 | }
|
---|
| 437 | }
|
---|
| 438 | } catch(ArrayIndexOutOfBoundsException e) {
|
---|
| 439 | throw new ArrayIndexOutOfBoundsException("Submatrix indices");
|
---|
| 440 | }
|
---|
| 441 | }
|
---|
| 442 |
|
---|
| 443 | /** Set a submatrix.
|
---|
| 444 | @param i0 Initial row index
|
---|
| 445 | @param i1 Final row index
|
---|
| 446 | @param c Array of column indices.
|
---|
| 447 | @param X A(i0:i1,c(:))
|
---|
| 448 | @exception ArrayIndexOutOfBoundsException Submatrix indices
|
---|
| 449 | */
|
---|
| 450 |
|
---|
| 451 | public void setMatrix (int i0, int i1, int[] c, Matrix X) {
|
---|
| 452 | try {
|
---|
| 453 | for (int i = i0; i <= i1; i++) {
|
---|
| 454 | for (int j = 0; j < c.length; j++) {
|
---|
| 455 | A[i][c[j]] = X.get(i-i0,j);
|
---|
| 456 | }
|
---|
| 457 | }
|
---|
| 458 | } catch(ArrayIndexOutOfBoundsException e) {
|
---|
| 459 | throw new ArrayIndexOutOfBoundsException("Submatrix indices");
|
---|
| 460 | }
|
---|
| 461 | }
|
---|
| 462 |
|
---|
| 463 | /** Matrix transpose.
|
---|
| 464 | @return A'
|
---|
| 465 | */
|
---|
| 466 |
|
---|
| 467 | public Matrix transpose () {
|
---|
| 468 | Matrix X = new Matrix(n,m);
|
---|
| 469 | double[][] C = X.getArray();
|
---|
| 470 | for (int i = 0; i < m; i++) {
|
---|
| 471 | for (int j = 0; j < n; j++) {
|
---|
| 472 | C[j][i] = A[i][j];
|
---|
| 473 | }
|
---|
| 474 | }
|
---|
| 475 | return X;
|
---|
| 476 | }
|
---|
| 477 |
|
---|
| 478 | /** One norm
|
---|
| 479 | @return maximum column sum.
|
---|
| 480 | */
|
---|
| 481 |
|
---|
| 482 | public double norm1 () {
|
---|
| 483 | double f = 0;
|
---|
| 484 | for (int j = 0; j < n; j++) {
|
---|
| 485 | double s = 0;
|
---|
| 486 | for (int i = 0; i < m; i++) {
|
---|
| 487 | s += Math.abs(A[i][j]);
|
---|
| 488 | }
|
---|
| 489 | f = Math.max(f,s);
|
---|
| 490 | }
|
---|
| 491 | return f;
|
---|
| 492 | }
|
---|
| 493 |
|
---|
| 494 | /** Two norm
|
---|
| 495 | @return maximum singular value.
|
---|
| 496 | */
|
---|
| 497 |
|
---|
| 498 | public double norm2 () {
|
---|
| 499 | return (new SingularValueDecomposition(this).norm2());
|
---|
| 500 | }
|
---|
| 501 |
|
---|
| 502 | /** Infinity norm
|
---|
| 503 | @return maximum row sum.
|
---|
| 504 | */
|
---|
| 505 |
|
---|
| 506 | public double normInf () {
|
---|
| 507 | double f = 0;
|
---|
| 508 | for (int i = 0; i < m; i++) {
|
---|
| 509 | double s = 0;
|
---|
| 510 | for (int j = 0; j < n; j++) {
|
---|
| 511 | s += Math.abs(A[i][j]);
|
---|
| 512 | }
|
---|
| 513 | f = Math.max(f,s);
|
---|
| 514 | }
|
---|
| 515 | return f;
|
---|
| 516 | }
|
---|
| 517 |
|
---|
| 518 | /** Frobenius norm
|
---|
| 519 | @return sqrt of sum of squares of all elements.
|
---|
| 520 | */
|
---|
| 521 |
|
---|
| 522 | public double normF () {
|
---|
| 523 | double f = 0;
|
---|
| 524 | for (int i = 0; i < m; i++) {
|
---|
| 525 | for (int j = 0; j < n; j++) {
|
---|
| 526 | f = Maths.hypot(f,A[i][j]);
|
---|
| 527 | }
|
---|
| 528 | }
|
---|
| 529 | return f;
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | /** Unary minus
|
---|
| 533 | @return -A
|
---|
| 534 | */
|
---|
| 535 |
|
---|
| 536 | public Matrix uminus () {
|
---|
| 537 | Matrix X = new Matrix(m,n);
|
---|
| 538 | double[][] C = X.getArray();
|
---|
| 539 | for (int i = 0; i < m; i++) {
|
---|
| 540 | for (int j = 0; j < n; j++) {
|
---|
| 541 | C[i][j] = -A[i][j];
|
---|
| 542 | }
|
---|
| 543 | }
|
---|
| 544 | return X;
|
---|
| 545 | }
|
---|
| 546 |
|
---|
| 547 | /** C = A + B
|
---|
| 548 | @param B another matrix
|
---|
| 549 | @return A + B
|
---|
| 550 | */
|
---|
| 551 |
|
---|
| 552 | public Matrix plus (Matrix B) {
|
---|
| 553 | checkMatrixDimensions(B);
|
---|
| 554 | Matrix X = new Matrix(m,n);
|
---|
| 555 | double[][] C = X.getArray();
|
---|
| 556 | for (int i = 0; i < m; i++) {
|
---|
| 557 | for (int j = 0; j < n; j++) {
|
---|
| 558 | C[i][j] = A[i][j] + B.A[i][j];
|
---|
| 559 | }
|
---|
| 560 | }
|
---|
| 561 | return X;
|
---|
| 562 | }
|
---|
| 563 |
|
---|
| 564 | /** A = A + B
|
---|
| 565 | @param B another matrix
|
---|
| 566 | @return A + B
|
---|
| 567 | */
|
---|
| 568 |
|
---|
| 569 | public Matrix plusEquals (Matrix B) {
|
---|
| 570 | checkMatrixDimensions(B);
|
---|
| 571 | for (int i = 0; i < m; i++) {
|
---|
| 572 | for (int j = 0; j < n; j++) {
|
---|
| 573 | A[i][j] = A[i][j] + B.A[i][j];
|
---|
| 574 | }
|
---|
| 575 | }
|
---|
| 576 | return this;
|
---|
| 577 | }
|
---|
| 578 |
|
---|
| 579 | /** C = A - B
|
---|
| 580 | @param B another matrix
|
---|
| 581 | @return A - B
|
---|
| 582 | */
|
---|
| 583 |
|
---|
| 584 | public Matrix minus (Matrix B) {
|
---|
| 585 | checkMatrixDimensions(B);
|
---|
| 586 | Matrix X = new Matrix(m,n);
|
---|
| 587 | double[][] C = X.getArray();
|
---|
| 588 | for (int i = 0; i < m; i++) {
|
---|
| 589 | for (int j = 0; j < n; j++) {
|
---|
| 590 | C[i][j] = A[i][j] - B.A[i][j];
|
---|
| 591 | }
|
---|
| 592 | }
|
---|
| 593 | return X;
|
---|
| 594 | }
|
---|
| 595 |
|
---|
| 596 | /** A = A - B
|
---|
| 597 | @param B another matrix
|
---|
| 598 | @return A - B
|
---|
| 599 | */
|
---|
| 600 |
|
---|
| 601 | public Matrix minusEquals (Matrix B) {
|
---|
| 602 | checkMatrixDimensions(B);
|
---|
| 603 | for (int i = 0; i < m; i++) {
|
---|
| 604 | for (int j = 0; j < n; j++) {
|
---|
| 605 | A[i][j] = A[i][j] - B.A[i][j];
|
---|
| 606 | }
|
---|
| 607 | }
|
---|
| 608 | return this;
|
---|
| 609 | }
|
---|
| 610 |
|
---|
| 611 | /** Element-by-element multiplication, C = A.*B
|
---|
| 612 | @param B another matrix
|
---|
| 613 | @return A.*B
|
---|
| 614 | */
|
---|
| 615 |
|
---|
| 616 | public Matrix arrayTimes (Matrix B) {
|
---|
| 617 | checkMatrixDimensions(B);
|
---|
| 618 | Matrix X = new Matrix(m,n);
|
---|
| 619 | double[][] C = X.getArray();
|
---|
| 620 | for (int i = 0; i < m; i++) {
|
---|
| 621 | for (int j = 0; j < n; j++) {
|
---|
| 622 | C[i][j] = A[i][j] * B.A[i][j];
|
---|
| 623 | }
|
---|
| 624 | }
|
---|
| 625 | return X;
|
---|
| 626 | }
|
---|
| 627 |
|
---|
| 628 | /** Element-by-element multiplication in place, A = A.*B
|
---|
| 629 | @param B another matrix
|
---|
| 630 | @return A.*B
|
---|
| 631 | */
|
---|
| 632 |
|
---|
| 633 | public Matrix arrayTimesEquals (Matrix B) {
|
---|
| 634 | checkMatrixDimensions(B);
|
---|
| 635 | for (int i = 0; i < m; i++) {
|
---|
| 636 | for (int j = 0; j < n; j++) {
|
---|
| 637 | A[i][j] = A[i][j] * B.A[i][j];
|
---|
| 638 | }
|
---|
| 639 | }
|
---|
| 640 | return this;
|
---|
| 641 | }
|
---|
| 642 |
|
---|
| 643 | /** Element-by-element right division, C = A./B
|
---|
| 644 | @param B another matrix
|
---|
| 645 | @return A./B
|
---|
| 646 | */
|
---|
| 647 |
|
---|
| 648 | public Matrix arrayRightDivide (Matrix B) {
|
---|
| 649 | checkMatrixDimensions(B);
|
---|
| 650 | Matrix X = new Matrix(m,n);
|
---|
| 651 | double[][] C = X.getArray();
|
---|
| 652 | for (int i = 0; i < m; i++) {
|
---|
| 653 | for (int j = 0; j < n; j++) {
|
---|
| 654 | C[i][j] = A[i][j] / B.A[i][j];
|
---|
| 655 | }
|
---|
| 656 | }
|
---|
| 657 | return X;
|
---|
| 658 | }
|
---|
| 659 |
|
---|
| 660 | /** Element-by-element right division in place, A = A./B
|
---|
| 661 | @param B another matrix
|
---|
| 662 | @return A./B
|
---|
| 663 | */
|
---|
| 664 |
|
---|
| 665 | public Matrix arrayRightDivideEquals (Matrix B) {
|
---|
| 666 | checkMatrixDimensions(B);
|
---|
| 667 | for (int i = 0; i < m; i++) {
|
---|
| 668 | for (int j = 0; j < n; j++) {
|
---|
| 669 | A[i][j] = A[i][j] / B.A[i][j];
|
---|
| 670 | }
|
---|
| 671 | }
|
---|
| 672 | return this;
|
---|
| 673 | }
|
---|
| 674 |
|
---|
| 675 | /** Element-by-element left division, C = A.\B
|
---|
| 676 | @param B another matrix
|
---|
| 677 | @return A.\B
|
---|
| 678 | */
|
---|
| 679 |
|
---|
| 680 | public Matrix arrayLeftDivide (Matrix B) {
|
---|
| 681 | checkMatrixDimensions(B);
|
---|
| 682 | Matrix X = new Matrix(m,n);
|
---|
| 683 | double[][] C = X.getArray();
|
---|
| 684 | for (int i = 0; i < m; i++) {
|
---|
| 685 | for (int j = 0; j < n; j++) {
|
---|
| 686 | C[i][j] = B.A[i][j] / A[i][j];
|
---|
| 687 | }
|
---|
| 688 | }
|
---|
| 689 | return X;
|
---|
| 690 | }
|
---|
| 691 |
|
---|
| 692 | /** Element-by-element left division in place, A = A.\B
|
---|
| 693 | @param B another matrix
|
---|
| 694 | @return A.\B
|
---|
| 695 | */
|
---|
| 696 |
|
---|
| 697 | public Matrix arrayLeftDivideEquals (Matrix B) {
|
---|
| 698 | checkMatrixDimensions(B);
|
---|
| 699 | for (int i = 0; i < m; i++) {
|
---|
| 700 | for (int j = 0; j < n; j++) {
|
---|
| 701 | A[i][j] = B.A[i][j] / A[i][j];
|
---|
| 702 | }
|
---|
| 703 | }
|
---|
| 704 | return this;
|
---|
| 705 | }
|
---|
| 706 |
|
---|
| 707 | /** Multiply a matrix by a scalar, C = s*A
|
---|
| 708 | @param s scalar
|
---|
| 709 | @return s*A
|
---|
| 710 | */
|
---|
| 711 |
|
---|
| 712 | public Matrix times (double s) {
|
---|
| 713 | Matrix X = new Matrix(m,n);
|
---|
| 714 | double[][] C = X.getArray();
|
---|
| 715 | for (int i = 0; i < m; i++) {
|
---|
| 716 | for (int j = 0; j < n; j++) {
|
---|
| 717 | C[i][j] = s*A[i][j];
|
---|
| 718 | }
|
---|
| 719 | }
|
---|
| 720 | return X;
|
---|
| 721 | }
|
---|
| 722 |
|
---|
| 723 | /** Multiply a matrix by a scalar in place, A = s*A
|
---|
| 724 | @param s scalar
|
---|
| 725 | @return replace A by s*A
|
---|
| 726 | */
|
---|
| 727 |
|
---|
| 728 | public Matrix timesEquals (double s) {
|
---|
| 729 | for (int i = 0; i < m; i++) {
|
---|
| 730 | for (int j = 0; j < n; j++) {
|
---|
| 731 | A[i][j] = s*A[i][j];
|
---|
| 732 | }
|
---|
| 733 | }
|
---|
| 734 | return this;
|
---|
| 735 | }
|
---|
| 736 |
|
---|
| 737 | /** Linear algebraic matrix multiplication, A * B
|
---|
| 738 | @param B another matrix
|
---|
| 739 | @return Matrix product, A * B
|
---|
| 740 | @exception IllegalArgumentException Matrix inner dimensions must agree.
|
---|
| 741 | */
|
---|
| 742 |
|
---|
| 743 | public Matrix times (Matrix B) {
|
---|
| 744 | if (B.m != n) {
|
---|
| 745 | throw new IllegalArgumentException("Matrix inner dimensions must agree.");
|
---|
| 746 | }
|
---|
| 747 | Matrix X = new Matrix(m,B.n);
|
---|
| 748 | double[][] C = X.getArray();
|
---|
| 749 | double[] Bcolj = new double[n];
|
---|
| 750 | for (int j = 0; j < B.n; j++) {
|
---|
| 751 | for (int k = 0; k < n; k++) {
|
---|
| 752 | Bcolj[k] = B.A[k][j];
|
---|
| 753 | }
|
---|
| 754 | for (int i = 0; i < m; i++) {
|
---|
| 755 | double[] Arowi = A[i];
|
---|
| 756 | double s = 0;
|
---|
| 757 | for (int k = 0; k < n; k++) {
|
---|
| 758 | s += Arowi[k]*Bcolj[k];
|
---|
| 759 | }
|
---|
| 760 | C[i][j] = s;
|
---|
| 761 | }
|
---|
| 762 | }
|
---|
| 763 | return X;
|
---|
| 764 | }
|
---|
| 765 |
|
---|
| 766 | /** LU Decomposition
|
---|
| 767 | @return LUDecomposition
|
---|
| 768 | @see LUDecomposition
|
---|
| 769 | */
|
---|
| 770 |
|
---|
| 771 | public LUDecomposition lu () {
|
---|
| 772 | return new LUDecomposition(this);
|
---|
| 773 | }
|
---|
| 774 |
|
---|
| 775 | /** QR Decomposition
|
---|
| 776 | @return QRDecomposition
|
---|
| 777 | @see QRDecomposition
|
---|
| 778 | */
|
---|
| 779 |
|
---|
| 780 | public QRDecomposition qr () {
|
---|
| 781 | return new QRDecomposition(this);
|
---|
| 782 | }
|
---|
| 783 |
|
---|
| 784 | /** Cholesky Decomposition
|
---|
| 785 | @return CholeskyDecomposition
|
---|
| 786 | @see CholeskyDecomposition
|
---|
| 787 | */
|
---|
| 788 |
|
---|
| 789 | public CholeskyDecomposition chol () {
|
---|
| 790 | return new CholeskyDecomposition(this);
|
---|
| 791 | }
|
---|
| 792 |
|
---|
| 793 | /** Singular Value Decomposition
|
---|
| 794 | @return SingularValueDecomposition
|
---|
| 795 | @see SingularValueDecomposition
|
---|
| 796 | */
|
---|
| 797 |
|
---|
| 798 | public SingularValueDecomposition svd () {
|
---|
| 799 | return new SingularValueDecomposition(this);
|
---|
| 800 | }
|
---|
| 801 |
|
---|
| 802 | /** Eigenvalue Decomposition
|
---|
| 803 | @return EigenvalueDecomposition
|
---|
| 804 | @see EigenvalueDecomposition
|
---|
| 805 | */
|
---|
| 806 |
|
---|
| 807 | public EigenvalueDecomposition eig () {
|
---|
| 808 | return new EigenvalueDecomposition(this);
|
---|
| 809 | }
|
---|
| 810 |
|
---|
| 811 | /** Solve A*X = B
|
---|
| 812 | @param B right hand side
|
---|
| 813 | @return solution if A is square, least squares solution otherwise
|
---|
| 814 | */
|
---|
| 815 |
|
---|
| 816 | public Matrix solve (Matrix B) {
|
---|
| 817 | return (m == n ? (new LUDecomposition(this)).solve(B) :
|
---|
| 818 | (new QRDecomposition(this)).solve(B));
|
---|
| 819 | }
|
---|
| 820 |
|
---|
| 821 | /** Solve X*A = B, which is also A'*X' = B'
|
---|
| 822 | @param B right hand side
|
---|
| 823 | @return solution if A is square, least squares solution otherwise.
|
---|
| 824 | */
|
---|
| 825 |
|
---|
| 826 | public Matrix solveTranspose (Matrix B) {
|
---|
| 827 | return transpose().solve(B.transpose());
|
---|
| 828 | }
|
---|
| 829 |
|
---|
| 830 | /** Matrix inverse or pseudoinverse
|
---|
| 831 | @return inverse(A) if A is square, pseudoinverse otherwise.
|
---|
| 832 | */
|
---|
| 833 |
|
---|
| 834 | public Matrix inverse () {
|
---|
| 835 | return solve(identity(m,m));
|
---|
| 836 | }
|
---|
| 837 |
|
---|
| 838 | /** Matrix determinant
|
---|
| 839 | @return determinant
|
---|
| 840 | */
|
---|
| 841 |
|
---|
| 842 | public double det () {
|
---|
| 843 | return new LUDecomposition(this).det();
|
---|
| 844 | }
|
---|
| 845 |
|
---|
| 846 | /** Matrix rank
|
---|
| 847 | @return effective numerical rank, obtained from SVD.
|
---|
| 848 | */
|
---|
| 849 |
|
---|
| 850 | public int rank () {
|
---|
| 851 | return new SingularValueDecomposition(this).rank();
|
---|
| 852 | }
|
---|
| 853 |
|
---|
| 854 | /** Matrix condition (2 norm)
|
---|
| 855 | @return ratio of largest to smallest singular value.
|
---|
| 856 | */
|
---|
| 857 |
|
---|
| 858 | public double cond () {
|
---|
| 859 | return new SingularValueDecomposition(this).cond();
|
---|
| 860 | }
|
---|
| 861 |
|
---|
| 862 | /** Matrix trace.
|
---|
| 863 | @return sum of the diagonal elements.
|
---|
| 864 | */
|
---|
| 865 |
|
---|
| 866 | public double trace () {
|
---|
| 867 | double t = 0;
|
---|
| 868 | for (int i = 0; i < Math.min(m,n); i++) {
|
---|
| 869 | t += A[i][i];
|
---|
| 870 | }
|
---|
| 871 | return t;
|
---|
| 872 | }
|
---|
| 873 |
|
---|
| 874 | /** Generate matrix with random elements
|
---|
| 875 | @param m Number of rows.
|
---|
| 876 | @param n Number of colums.
|
---|
| 877 | @return An m-by-n matrix with uniformly distributed random elements.
|
---|
| 878 | */
|
---|
| 879 |
|
---|
| 880 | public static Matrix random (int m, int n) {
|
---|
| 881 | Matrix A = new Matrix(m,n);
|
---|
| 882 | double[][] X = A.getArray();
|
---|
| 883 | for (int i = 0; i < m; i++) {
|
---|
| 884 | for (int j = 0; j < n; j++) {
|
---|
| 885 | X[i][j] = Math.random();
|
---|
| 886 | }
|
---|
| 887 | }
|
---|
| 888 | return A;
|
---|
| 889 | }
|
---|
| 890 |
|
---|
| 891 | /** Generate identity matrix
|
---|
| 892 | @param m Number of rows.
|
---|
| 893 | @param n Number of colums.
|
---|
| 894 | @return An m-by-n matrix with ones on the diagonal and zeros elsewhere.
|
---|
| 895 | */
|
---|
| 896 |
|
---|
| 897 | public static Matrix identity (int m, int n) {
|
---|
| 898 | Matrix A = new Matrix(m,n);
|
---|
| 899 | double[][] X = A.getArray();
|
---|
| 900 | for (int i = 0; i < m; i++) {
|
---|
| 901 | for (int j = 0; j < n; j++) {
|
---|
| 902 | X[i][j] = (i == j ? 1.0 : 0.0);
|
---|
| 903 | }
|
---|
| 904 | }
|
---|
| 905 | return A;
|
---|
| 906 | }
|
---|
| 907 |
|
---|
| 908 |
|
---|
| 909 | /** Print the matrix to stdout. Line the elements up in columns
|
---|
| 910 | * with a Fortran-like 'Fw.d' style format.
|
---|
| 911 | @param w Column width.
|
---|
| 912 | @param d Number of digits after the decimal.
|
---|
| 913 | */
|
---|
| 914 |
|
---|
| 915 | public void print (int w, int d) {
|
---|
| 916 | print(new PrintWriter(System.out,true),w,d); }
|
---|
| 917 |
|
---|
| 918 | /** Print the matrix to the output stream. Line the elements up in
|
---|
| 919 | * columns with a Fortran-like 'Fw.d' style format.
|
---|
| 920 | @param output Output stream.
|
---|
| 921 | @param w Column width.
|
---|
| 922 | @param d Number of digits after the decimal.
|
---|
| 923 | */
|
---|
| 924 |
|
---|
| 925 | public void print (PrintWriter output, int w, int d) {
|
---|
| 926 | DecimalFormat format = new DecimalFormat();
|
---|
| 927 | format.setDecimalFormatSymbols(new DecimalFormatSymbols(Locale.US));
|
---|
| 928 | format.setMinimumIntegerDigits(1);
|
---|
| 929 | format.setMaximumFractionDigits(d);
|
---|
| 930 | format.setMinimumFractionDigits(d);
|
---|
| 931 | format.setGroupingUsed(false);
|
---|
| 932 | print(output,format,w+2);
|
---|
| 933 | }
|
---|
| 934 |
|
---|
| 935 | /** Print the matrix to stdout. Line the elements up in columns.
|
---|
| 936 | * Use the format object, and right justify within columns of width
|
---|
| 937 | * characters.
|
---|
| 938 | * Note that is the matrix is to be read back in, you probably will want
|
---|
| 939 | * to use a NumberFormat that is set to US Locale.
|
---|
| 940 | @param format A Formatting object for individual elements.
|
---|
| 941 | @param width Field width for each column.
|
---|
| 942 | @see java.text.DecimalFormat#setDecimalFormatSymbols
|
---|
| 943 | */
|
---|
| 944 |
|
---|
| 945 | public void print (NumberFormat format, int width) {
|
---|
| 946 | print(new PrintWriter(System.out,true),format,width); }
|
---|
| 947 |
|
---|
| 948 | // DecimalFormat is a little disappointing coming from Fortran or C's printf.
|
---|
| 949 | // Since it doesn't pad on the left, the elements will come out different
|
---|
| 950 | // widths. Consequently, we'll pass the desired column width in as an
|
---|
| 951 | // argument and do the extra padding ourselves.
|
---|
| 952 |
|
---|
| 953 | /** Print the matrix to the output stream. Line the elements up in columns.
|
---|
| 954 | * Use the format object, and right justify within columns of width
|
---|
| 955 | * characters.
|
---|
| 956 | * Note that is the matrix is to be read back in, you probably will want
|
---|
| 957 | * to use a NumberFormat that is set to US Locale.
|
---|
| 958 | @param output the output stream.
|
---|
| 959 | @param format A formatting object to format the matrix elements
|
---|
| 960 | @param width Column width.
|
---|
| 961 | @see java.text.DecimalFormat#setDecimalFormatSymbols
|
---|
| 962 | */
|
---|
| 963 |
|
---|
| 964 | public void print (PrintWriter output, NumberFormat format, int width) {
|
---|
| 965 | output.println(); // start on new line.
|
---|
| 966 | for (int i = 0; i < m; i++) {
|
---|
| 967 | for (int j = 0; j < n; j++) {
|
---|
| 968 | String s = format.format(A[i][j]); // format the number
|
---|
| 969 | int padding = Math.max(1,width-s.length()); // At _least_ 1 space
|
---|
| 970 | for (int k = 0; k < padding; k++)
|
---|
| 971 | output.print(' ');
|
---|
| 972 | output.print(s);
|
---|
| 973 | }
|
---|
| 974 | output.println();
|
---|
| 975 | }
|
---|
| 976 | output.println(); // end with blank line.
|
---|
| 977 | }
|
---|
| 978 |
|
---|
| 979 | /** Read a matrix from a stream. The format is the same the print method,
|
---|
| 980 | * so printed matrices can be read back in (provided they were printed using
|
---|
| 981 | * US Locale). Elements are separated by
|
---|
| 982 | * whitespace, all the elements for each row appear on a single line,
|
---|
| 983 | * the last row is followed by a blank line.
|
---|
| 984 | @param input the input stream.
|
---|
| 985 | */
|
---|
| 986 |
|
---|
| 987 | public static Matrix read (BufferedReader input) throws java.io.IOException {
|
---|
| 988 | StreamTokenizer tokenizer= new StreamTokenizer(input);
|
---|
| 989 |
|
---|
| 990 | // Although StreamTokenizer will parse numbers, it doesn't recognize
|
---|
| 991 | // scientific notation (E or D); however, Double.valueOf does.
|
---|
| 992 | // The strategy here is to disable StreamTokenizer's number parsing.
|
---|
| 993 | // We'll only get whitespace delimited words, EOL's and EOF's.
|
---|
| 994 | // These words should all be numbers, for Double.valueOf to parse.
|
---|
| 995 |
|
---|
| 996 | tokenizer.resetSyntax();
|
---|
| 997 | tokenizer.wordChars(0,255);
|
---|
| 998 | tokenizer.whitespaceChars(0, ' ');
|
---|
| 999 | tokenizer.eolIsSignificant(true);
|
---|
| 1000 | java.util.Vector<Double> vD = new java.util.Vector<Double>();
|
---|
| 1001 |
|
---|
| 1002 | // Ignore initial empty lines
|
---|
| 1003 | while (tokenizer.nextToken() == StreamTokenizer.TT_EOL);
|
---|
| 1004 | if (tokenizer.ttype == StreamTokenizer.TT_EOF)
|
---|
| 1005 | throw new java.io.IOException("Unexpected EOF on matrix read.");
|
---|
| 1006 | do {
|
---|
| 1007 | vD.addElement(Double.valueOf(tokenizer.sval)); // Read & store 1st row.
|
---|
| 1008 | } while (tokenizer.nextToken() == StreamTokenizer.TT_WORD);
|
---|
| 1009 |
|
---|
| 1010 | int n = vD.size(); // Now we've got the number of columns!
|
---|
| 1011 | double row[] = new double[n];
|
---|
| 1012 | for (int j=0; j<n; j++) // extract the elements of the 1st row.
|
---|
| 1013 | row[j]=vD.elementAt(j).doubleValue();
|
---|
| 1014 | java.util.Vector<double[]> v = new java.util.Vector<double[]>();
|
---|
| 1015 | v.addElement(row); // Start storing rows instead of columns.
|
---|
| 1016 | while (tokenizer.nextToken() == StreamTokenizer.TT_WORD) {
|
---|
| 1017 | // While non-empty lines
|
---|
| 1018 | v.addElement(row = new double[n]);
|
---|
| 1019 | int j = 0;
|
---|
| 1020 | do {
|
---|
| 1021 | if (j >= n) throw new java.io.IOException
|
---|
| 1022 | ("Row " + v.size() + " is too long.");
|
---|
| 1023 | row[j++] = Double.valueOf(tokenizer.sval).doubleValue();
|
---|
| 1024 | } while (tokenizer.nextToken() == StreamTokenizer.TT_WORD);
|
---|
| 1025 | if (j < n) throw new java.io.IOException
|
---|
| 1026 | ("Row " + v.size() + " is too short.");
|
---|
| 1027 | }
|
---|
| 1028 | int m = v.size(); // Now we've got the number of rows.
|
---|
| 1029 | double[][] A = new double[m][];
|
---|
| 1030 | v.copyInto(A); // copy the rows out of the vector
|
---|
| 1031 | return new Matrix(A);
|
---|
| 1032 | }
|
---|
| 1033 |
|
---|
| 1034 |
|
---|
| 1035 | /* ------------------------
|
---|
| 1036 | Private Methods
|
---|
| 1037 | * ------------------------ */
|
---|
| 1038 |
|
---|
| 1039 | /** Check if size(A) == size(B) **/
|
---|
| 1040 |
|
---|
| 1041 | private void checkMatrixDimensions (Matrix B) {
|
---|
| 1042 | if (B.m != m || B.n != n) {
|
---|
| 1043 | throw new IllegalArgumentException("Matrix dimensions must agree.");
|
---|
| 1044 | }
|
---|
| 1045 | }
|
---|
| 1046 |
|
---|
| 1047 | private static final long serialVersionUID = 1;
|
---|
| 1048 | }
|
---|