1 | package agents.Jama;
|
---|
2 | import agents.Jama.util.*;
|
---|
3 |
|
---|
4 | /** Eigenvalues and eigenvectors of a real matrix.
|
---|
5 | <P>
|
---|
6 | If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
|
---|
7 | diagonal and the eigenvector matrix V is orthogonal.
|
---|
8 | I.e. A = V.times(D.times(V.transpose())) and
|
---|
9 | V.times(V.transpose()) equals the identity matrix.
|
---|
10 | <P>
|
---|
11 | If A is not symmetric, then the eigenvalue matrix D is block diagonal
|
---|
12 | with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
|
---|
13 | lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
|
---|
14 | columns of V represent the eigenvectors in the sense that A*V = V*D,
|
---|
15 | i.e. A.times(V) equals V.times(D). The matrix V may be badly
|
---|
16 | conditioned, or even singular, so the validity of the equation
|
---|
17 | A = V*D*inverse(V) depends upon V.cond().
|
---|
18 | **/
|
---|
19 |
|
---|
20 | public class EigenvalueDecomposition implements java.io.Serializable {
|
---|
21 |
|
---|
22 | /* ------------------------
|
---|
23 | Class variables
|
---|
24 | * ------------------------ */
|
---|
25 |
|
---|
26 | /** Row and column dimension (square matrix).
|
---|
27 | @serial matrix dimension.
|
---|
28 | */
|
---|
29 | private int n;
|
---|
30 |
|
---|
31 | /** Symmetry flag.
|
---|
32 | @serial internal symmetry flag.
|
---|
33 | */
|
---|
34 | private boolean issymmetric;
|
---|
35 |
|
---|
36 | /** Arrays for internal storage of eigenvalues.
|
---|
37 | @serial internal storage of eigenvalues.
|
---|
38 | */
|
---|
39 | private double[] d, e;
|
---|
40 |
|
---|
41 | /** Array for internal storage of eigenvectors.
|
---|
42 | @serial internal storage of eigenvectors.
|
---|
43 | */
|
---|
44 | private double[][] V;
|
---|
45 |
|
---|
46 | /** Array for internal storage of nonsymmetric Hessenberg form.
|
---|
47 | @serial internal storage of nonsymmetric Hessenberg form.
|
---|
48 | */
|
---|
49 | private double[][] H;
|
---|
50 |
|
---|
51 | /** Working storage for nonsymmetric algorithm.
|
---|
52 | @serial working storage for nonsymmetric algorithm.
|
---|
53 | */
|
---|
54 | private double[] ort;
|
---|
55 |
|
---|
56 | /* ------------------------
|
---|
57 | Private Methods
|
---|
58 | * ------------------------ */
|
---|
59 |
|
---|
60 | // Symmetric Householder reduction to tridiagonal form.
|
---|
61 |
|
---|
62 | private void tred2 () {
|
---|
63 |
|
---|
64 | // This is derived from the Algol procedures tred2 by
|
---|
65 | // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
---|
66 | // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
---|
67 | // Fortran subroutine in EISPACK.
|
---|
68 |
|
---|
69 | for (int j = 0; j < n; j++) {
|
---|
70 | d[j] = V[n-1][j];
|
---|
71 | }
|
---|
72 |
|
---|
73 | // Householder reduction to tridiagonal form.
|
---|
74 |
|
---|
75 | for (int i = n-1; i > 0; i--) {
|
---|
76 |
|
---|
77 | // Scale to avoid under/overflow.
|
---|
78 |
|
---|
79 | double scale = 0.0;
|
---|
80 | double h = 0.0;
|
---|
81 | for (int k = 0; k < i; k++) {
|
---|
82 | scale = scale + Math.abs(d[k]);
|
---|
83 | }
|
---|
84 | if (scale == 0.0) {
|
---|
85 | e[i] = d[i-1];
|
---|
86 | for (int j = 0; j < i; j++) {
|
---|
87 | d[j] = V[i-1][j];
|
---|
88 | V[i][j] = 0.0;
|
---|
89 | V[j][i] = 0.0;
|
---|
90 | }
|
---|
91 | } else {
|
---|
92 |
|
---|
93 | // Generate Householder vector.
|
---|
94 |
|
---|
95 | for (int k = 0; k < i; k++) {
|
---|
96 | d[k] /= scale;
|
---|
97 | h += d[k] * d[k];
|
---|
98 | }
|
---|
99 | double f = d[i-1];
|
---|
100 | double g = Math.sqrt(h);
|
---|
101 | if (f > 0) {
|
---|
102 | g = -g;
|
---|
103 | }
|
---|
104 | e[i] = scale * g;
|
---|
105 | h = h - f * g;
|
---|
106 | d[i-1] = f - g;
|
---|
107 | for (int j = 0; j < i; j++) {
|
---|
108 | e[j] = 0.0;
|
---|
109 | }
|
---|
110 |
|
---|
111 | // Apply similarity transformation to remaining columns.
|
---|
112 |
|
---|
113 | for (int j = 0; j < i; j++) {
|
---|
114 | f = d[j];
|
---|
115 | V[j][i] = f;
|
---|
116 | g = e[j] + V[j][j] * f;
|
---|
117 | for (int k = j+1; k <= i-1; k++) {
|
---|
118 | g += V[k][j] * d[k];
|
---|
119 | e[k] += V[k][j] * f;
|
---|
120 | }
|
---|
121 | e[j] = g;
|
---|
122 | }
|
---|
123 | f = 0.0;
|
---|
124 | for (int j = 0; j < i; j++) {
|
---|
125 | e[j] /= h;
|
---|
126 | f += e[j] * d[j];
|
---|
127 | }
|
---|
128 | double hh = f / (h + h);
|
---|
129 | for (int j = 0; j < i; j++) {
|
---|
130 | e[j] -= hh * d[j];
|
---|
131 | }
|
---|
132 | for (int j = 0; j < i; j++) {
|
---|
133 | f = d[j];
|
---|
134 | g = e[j];
|
---|
135 | for (int k = j; k <= i-1; k++) {
|
---|
136 | V[k][j] -= (f * e[k] + g * d[k]);
|
---|
137 | }
|
---|
138 | d[j] = V[i-1][j];
|
---|
139 | V[i][j] = 0.0;
|
---|
140 | }
|
---|
141 | }
|
---|
142 | d[i] = h;
|
---|
143 | }
|
---|
144 |
|
---|
145 | // Accumulate transformations.
|
---|
146 |
|
---|
147 | for (int i = 0; i < n-1; i++) {
|
---|
148 | V[n-1][i] = V[i][i];
|
---|
149 | V[i][i] = 1.0;
|
---|
150 | double h = d[i+1];
|
---|
151 | if (h != 0.0) {
|
---|
152 | for (int k = 0; k <= i; k++) {
|
---|
153 | d[k] = V[k][i+1] / h;
|
---|
154 | }
|
---|
155 | for (int j = 0; j <= i; j++) {
|
---|
156 | double g = 0.0;
|
---|
157 | for (int k = 0; k <= i; k++) {
|
---|
158 | g += V[k][i+1] * V[k][j];
|
---|
159 | }
|
---|
160 | for (int k = 0; k <= i; k++) {
|
---|
161 | V[k][j] -= g * d[k];
|
---|
162 | }
|
---|
163 | }
|
---|
164 | }
|
---|
165 | for (int k = 0; k <= i; k++) {
|
---|
166 | V[k][i+1] = 0.0;
|
---|
167 | }
|
---|
168 | }
|
---|
169 | for (int j = 0; j < n; j++) {
|
---|
170 | d[j] = V[n-1][j];
|
---|
171 | V[n-1][j] = 0.0;
|
---|
172 | }
|
---|
173 | V[n-1][n-1] = 1.0;
|
---|
174 | e[0] = 0.0;
|
---|
175 | }
|
---|
176 |
|
---|
177 | // Symmetric tridiagonal QL algorithm.
|
---|
178 |
|
---|
179 | private void tql2 () {
|
---|
180 |
|
---|
181 | // This is derived from the Algol procedures tql2, by
|
---|
182 | // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
---|
183 | // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
---|
184 | // Fortran subroutine in EISPACK.
|
---|
185 |
|
---|
186 | for (int i = 1; i < n; i++) {
|
---|
187 | e[i-1] = e[i];
|
---|
188 | }
|
---|
189 | e[n-1] = 0.0;
|
---|
190 |
|
---|
191 | double f = 0.0;
|
---|
192 | double tst1 = 0.0;
|
---|
193 | double eps = Math.pow(2.0,-52.0);
|
---|
194 | for (int l = 0; l < n; l++) {
|
---|
195 |
|
---|
196 | // Find small subdiagonal element
|
---|
197 |
|
---|
198 | tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l]));
|
---|
199 | int m = l;
|
---|
200 | while (m < n) {
|
---|
201 | if (Math.abs(e[m]) <= eps*tst1) {
|
---|
202 | break;
|
---|
203 | }
|
---|
204 | m++;
|
---|
205 | }
|
---|
206 |
|
---|
207 | // If m == l, d[l] is an eigenvalue,
|
---|
208 | // otherwise, iterate.
|
---|
209 |
|
---|
210 | if (m > l) {
|
---|
211 | int iter = 0;
|
---|
212 | do {
|
---|
213 | iter = iter + 1; // (Could check iteration count here.)
|
---|
214 |
|
---|
215 | // Compute implicit shift
|
---|
216 |
|
---|
217 | double g = d[l];
|
---|
218 | double p = (d[l+1] - g) / (2.0 * e[l]);
|
---|
219 | double r = Maths.hypot(p,1.0);
|
---|
220 | if (p < 0) {
|
---|
221 | r = -r;
|
---|
222 | }
|
---|
223 | d[l] = e[l] / (p + r);
|
---|
224 | d[l+1] = e[l] * (p + r);
|
---|
225 | double dl1 = d[l+1];
|
---|
226 | double h = g - d[l];
|
---|
227 | for (int i = l+2; i < n; i++) {
|
---|
228 | d[i] -= h;
|
---|
229 | }
|
---|
230 | f = f + h;
|
---|
231 |
|
---|
232 | // Implicit QL transformation.
|
---|
233 |
|
---|
234 | p = d[m];
|
---|
235 | double c = 1.0;
|
---|
236 | double c2 = c;
|
---|
237 | double c3 = c;
|
---|
238 | double el1 = e[l+1];
|
---|
239 | double s = 0.0;
|
---|
240 | double s2 = 0.0;
|
---|
241 | for (int i = m-1; i >= l; i--) {
|
---|
242 | c3 = c2;
|
---|
243 | c2 = c;
|
---|
244 | s2 = s;
|
---|
245 | g = c * e[i];
|
---|
246 | h = c * p;
|
---|
247 | r = Maths.hypot(p,e[i]);
|
---|
248 | e[i+1] = s * r;
|
---|
249 | s = e[i] / r;
|
---|
250 | c = p / r;
|
---|
251 | p = c * d[i] - s * g;
|
---|
252 | d[i+1] = h + s * (c * g + s * d[i]);
|
---|
253 |
|
---|
254 | // Accumulate transformation.
|
---|
255 |
|
---|
256 | for (int k = 0; k < n; k++) {
|
---|
257 | h = V[k][i+1];
|
---|
258 | V[k][i+1] = s * V[k][i] + c * h;
|
---|
259 | V[k][i] = c * V[k][i] - s * h;
|
---|
260 | }
|
---|
261 | }
|
---|
262 | p = -s * s2 * c3 * el1 * e[l] / dl1;
|
---|
263 | e[l] = s * p;
|
---|
264 | d[l] = c * p;
|
---|
265 |
|
---|
266 | // Check for convergence.
|
---|
267 |
|
---|
268 | } while (Math.abs(e[l]) > eps*tst1);
|
---|
269 | }
|
---|
270 | d[l] = d[l] + f;
|
---|
271 | e[l] = 0.0;
|
---|
272 | }
|
---|
273 |
|
---|
274 | // Sort eigenvalues and corresponding vectors.
|
---|
275 |
|
---|
276 | for (int i = 0; i < n-1; i++) {
|
---|
277 | int k = i;
|
---|
278 | double p = d[i];
|
---|
279 | for (int j = i+1; j < n; j++) {
|
---|
280 | if (d[j] < p) {
|
---|
281 | k = j;
|
---|
282 | p = d[j];
|
---|
283 | }
|
---|
284 | }
|
---|
285 | if (k != i) {
|
---|
286 | d[k] = d[i];
|
---|
287 | d[i] = p;
|
---|
288 | for (int j = 0; j < n; j++) {
|
---|
289 | p = V[j][i];
|
---|
290 | V[j][i] = V[j][k];
|
---|
291 | V[j][k] = p;
|
---|
292 | }
|
---|
293 | }
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 | // Nonsymmetric reduction to Hessenberg form.
|
---|
298 |
|
---|
299 | private void orthes () {
|
---|
300 |
|
---|
301 | // This is derived from the Algol procedures orthes and ortran,
|
---|
302 | // by Martin and Wilkinson, Handbook for Auto. Comp.,
|
---|
303 | // Vol.ii-Linear Algebra, and the corresponding
|
---|
304 | // Fortran subroutines in EISPACK.
|
---|
305 |
|
---|
306 | int low = 0;
|
---|
307 | int high = n-1;
|
---|
308 |
|
---|
309 | for (int m = low+1; m <= high-1; m++) {
|
---|
310 |
|
---|
311 | // Scale column.
|
---|
312 |
|
---|
313 | double scale = 0.0;
|
---|
314 | for (int i = m; i <= high; i++) {
|
---|
315 | scale = scale + Math.abs(H[i][m-1]);
|
---|
316 | }
|
---|
317 | if (scale != 0.0) {
|
---|
318 |
|
---|
319 | // Compute Householder transformation.
|
---|
320 |
|
---|
321 | double h = 0.0;
|
---|
322 | for (int i = high; i >= m; i--) {
|
---|
323 | ort[i] = H[i][m-1]/scale;
|
---|
324 | h += ort[i] * ort[i];
|
---|
325 | }
|
---|
326 | double g = Math.sqrt(h);
|
---|
327 | if (ort[m] > 0) {
|
---|
328 | g = -g;
|
---|
329 | }
|
---|
330 | h = h - ort[m] * g;
|
---|
331 | ort[m] = ort[m] - g;
|
---|
332 |
|
---|
333 | // Apply Householder similarity transformation
|
---|
334 | // H = (I-u*u'/h)*H*(I-u*u')/h)
|
---|
335 |
|
---|
336 | for (int j = m; j < n; j++) {
|
---|
337 | double f = 0.0;
|
---|
338 | for (int i = high; i >= m; i--) {
|
---|
339 | f += ort[i]*H[i][j];
|
---|
340 | }
|
---|
341 | f = f/h;
|
---|
342 | for (int i = m; i <= high; i++) {
|
---|
343 | H[i][j] -= f*ort[i];
|
---|
344 | }
|
---|
345 | }
|
---|
346 |
|
---|
347 | for (int i = 0; i <= high; i++) {
|
---|
348 | double f = 0.0;
|
---|
349 | for (int j = high; j >= m; j--) {
|
---|
350 | f += ort[j]*H[i][j];
|
---|
351 | }
|
---|
352 | f = f/h;
|
---|
353 | for (int j = m; j <= high; j++) {
|
---|
354 | H[i][j] -= f*ort[j];
|
---|
355 | }
|
---|
356 | }
|
---|
357 | ort[m] = scale*ort[m];
|
---|
358 | H[m][m-1] = scale*g;
|
---|
359 | }
|
---|
360 | }
|
---|
361 |
|
---|
362 | // Accumulate transformations (Algol's ortran).
|
---|
363 |
|
---|
364 | for (int i = 0; i < n; i++) {
|
---|
365 | for (int j = 0; j < n; j++) {
|
---|
366 | V[i][j] = (i == j ? 1.0 : 0.0);
|
---|
367 | }
|
---|
368 | }
|
---|
369 |
|
---|
370 | for (int m = high-1; m >= low+1; m--) {
|
---|
371 | if (H[m][m-1] != 0.0) {
|
---|
372 | for (int i = m+1; i <= high; i++) {
|
---|
373 | ort[i] = H[i][m-1];
|
---|
374 | }
|
---|
375 | for (int j = m; j <= high; j++) {
|
---|
376 | double g = 0.0;
|
---|
377 | for (int i = m; i <= high; i++) {
|
---|
378 | g += ort[i] * V[i][j];
|
---|
379 | }
|
---|
380 | // Double division avoids possible underflow
|
---|
381 | g = (g / ort[m]) / H[m][m-1];
|
---|
382 | for (int i = m; i <= high; i++) {
|
---|
383 | V[i][j] += g * ort[i];
|
---|
384 | }
|
---|
385 | }
|
---|
386 | }
|
---|
387 | }
|
---|
388 | }
|
---|
389 |
|
---|
390 |
|
---|
391 | // Complex scalar division.
|
---|
392 |
|
---|
393 | private transient double cdivr, cdivi;
|
---|
394 | private void cdiv(double xr, double xi, double yr, double yi) {
|
---|
395 | double r,d;
|
---|
396 | if (Math.abs(yr) > Math.abs(yi)) {
|
---|
397 | r = yi/yr;
|
---|
398 | d = yr + r*yi;
|
---|
399 | cdivr = (xr + r*xi)/d;
|
---|
400 | cdivi = (xi - r*xr)/d;
|
---|
401 | } else {
|
---|
402 | r = yr/yi;
|
---|
403 | d = yi + r*yr;
|
---|
404 | cdivr = (r*xr + xi)/d;
|
---|
405 | cdivi = (r*xi - xr)/d;
|
---|
406 | }
|
---|
407 | }
|
---|
408 |
|
---|
409 |
|
---|
410 | // Nonsymmetric reduction from Hessenberg to real Schur form.
|
---|
411 |
|
---|
412 | private void hqr2 () {
|
---|
413 |
|
---|
414 | // This is derived from the Algol procedure hqr2,
|
---|
415 | // by Martin and Wilkinson, Handbook for Auto. Comp.,
|
---|
416 | // Vol.ii-Linear Algebra, and the corresponding
|
---|
417 | // Fortran subroutine in EISPACK.
|
---|
418 |
|
---|
419 | // Initialize
|
---|
420 |
|
---|
421 | int nn = this.n;
|
---|
422 | int n = nn-1;
|
---|
423 | int low = 0;
|
---|
424 | int high = nn-1;
|
---|
425 | double eps = Math.pow(2.0,-52.0);
|
---|
426 | double exshift = 0.0;
|
---|
427 | double p=0,q=0,r=0,s=0,z=0,t,w,x,y;
|
---|
428 |
|
---|
429 | // Store roots isolated by balanc and compute matrix norm
|
---|
430 |
|
---|
431 | double norm = 0.0;
|
---|
432 | for (int i = 0; i < nn; i++) {
|
---|
433 | if (i < low | i > high) {
|
---|
434 | d[i] = H[i][i];
|
---|
435 | e[i] = 0.0;
|
---|
436 | }
|
---|
437 | for (int j = Math.max(i-1,0); j < nn; j++) {
|
---|
438 | norm = norm + Math.abs(H[i][j]);
|
---|
439 | }
|
---|
440 | }
|
---|
441 |
|
---|
442 | // Outer loop over eigenvalue index
|
---|
443 |
|
---|
444 | int iter = 0;
|
---|
445 | while (n >= low) {
|
---|
446 |
|
---|
447 | // Look for single small sub-diagonal element
|
---|
448 |
|
---|
449 | int l = n;
|
---|
450 | while (l > low) {
|
---|
451 | s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]);
|
---|
452 | if (s == 0.0) {
|
---|
453 | s = norm;
|
---|
454 | }
|
---|
455 | if (Math.abs(H[l][l-1]) < eps * s) {
|
---|
456 | break;
|
---|
457 | }
|
---|
458 | l--;
|
---|
459 | }
|
---|
460 |
|
---|
461 | // Check for convergence
|
---|
462 | // One root found
|
---|
463 |
|
---|
464 | if (l == n) {
|
---|
465 | H[n][n] = H[n][n] + exshift;
|
---|
466 | d[n] = H[n][n];
|
---|
467 | e[n] = 0.0;
|
---|
468 | n--;
|
---|
469 | iter = 0;
|
---|
470 |
|
---|
471 | // Two roots found
|
---|
472 |
|
---|
473 | } else if (l == n-1) {
|
---|
474 | w = H[n][n-1] * H[n-1][n];
|
---|
475 | p = (H[n-1][n-1] - H[n][n]) / 2.0;
|
---|
476 | q = p * p + w;
|
---|
477 | z = Math.sqrt(Math.abs(q));
|
---|
478 | H[n][n] = H[n][n] + exshift;
|
---|
479 | H[n-1][n-1] = H[n-1][n-1] + exshift;
|
---|
480 | x = H[n][n];
|
---|
481 |
|
---|
482 | // Real pair
|
---|
483 |
|
---|
484 | if (q >= 0) {
|
---|
485 | if (p >= 0) {
|
---|
486 | z = p + z;
|
---|
487 | } else {
|
---|
488 | z = p - z;
|
---|
489 | }
|
---|
490 | d[n-1] = x + z;
|
---|
491 | d[n] = d[n-1];
|
---|
492 | if (z != 0.0) {
|
---|
493 | d[n] = x - w / z;
|
---|
494 | }
|
---|
495 | e[n-1] = 0.0;
|
---|
496 | e[n] = 0.0;
|
---|
497 | x = H[n][n-1];
|
---|
498 | s = Math.abs(x) + Math.abs(z);
|
---|
499 | p = x / s;
|
---|
500 | q = z / s;
|
---|
501 | r = Math.sqrt(p * p+q * q);
|
---|
502 | p = p / r;
|
---|
503 | q = q / r;
|
---|
504 |
|
---|
505 | // Row modification
|
---|
506 |
|
---|
507 | for (int j = n-1; j < nn; j++) {
|
---|
508 | z = H[n-1][j];
|
---|
509 | H[n-1][j] = q * z + p * H[n][j];
|
---|
510 | H[n][j] = q * H[n][j] - p * z;
|
---|
511 | }
|
---|
512 |
|
---|
513 | // Column modification
|
---|
514 |
|
---|
515 | for (int i = 0; i <= n; i++) {
|
---|
516 | z = H[i][n-1];
|
---|
517 | H[i][n-1] = q * z + p * H[i][n];
|
---|
518 | H[i][n] = q * H[i][n] - p * z;
|
---|
519 | }
|
---|
520 |
|
---|
521 | // Accumulate transformations
|
---|
522 |
|
---|
523 | for (int i = low; i <= high; i++) {
|
---|
524 | z = V[i][n-1];
|
---|
525 | V[i][n-1] = q * z + p * V[i][n];
|
---|
526 | V[i][n] = q * V[i][n] - p * z;
|
---|
527 | }
|
---|
528 |
|
---|
529 | // Complex pair
|
---|
530 |
|
---|
531 | } else {
|
---|
532 | d[n-1] = x + p;
|
---|
533 | d[n] = x + p;
|
---|
534 | e[n-1] = z;
|
---|
535 | e[n] = -z;
|
---|
536 | }
|
---|
537 | n = n - 2;
|
---|
538 | iter = 0;
|
---|
539 |
|
---|
540 | // No convergence yet
|
---|
541 |
|
---|
542 | } else {
|
---|
543 |
|
---|
544 | // Form shift
|
---|
545 |
|
---|
546 | x = H[n][n];
|
---|
547 | y = 0.0;
|
---|
548 | w = 0.0;
|
---|
549 | if (l < n) {
|
---|
550 | y = H[n-1][n-1];
|
---|
551 | w = H[n][n-1] * H[n-1][n];
|
---|
552 | }
|
---|
553 |
|
---|
554 | // Wilkinson's original ad hoc shift
|
---|
555 |
|
---|
556 | if (iter == 10) {
|
---|
557 | exshift += x;
|
---|
558 | for (int i = low; i <= n; i++) {
|
---|
559 | H[i][i] -= x;
|
---|
560 | }
|
---|
561 | s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]);
|
---|
562 | x = y = 0.75 * s;
|
---|
563 | w = -0.4375 * s * s;
|
---|
564 | }
|
---|
565 |
|
---|
566 | // MATLAB's new ad hoc shift
|
---|
567 |
|
---|
568 | if (iter == 30) {
|
---|
569 | s = (y - x) / 2.0;
|
---|
570 | s = s * s + w;
|
---|
571 | if (s > 0) {
|
---|
572 | s = Math.sqrt(s);
|
---|
573 | if (y < x) {
|
---|
574 | s = -s;
|
---|
575 | }
|
---|
576 | s = x - w / ((y - x) / 2.0 + s);
|
---|
577 | for (int i = low; i <= n; i++) {
|
---|
578 | H[i][i] -= s;
|
---|
579 | }
|
---|
580 | exshift += s;
|
---|
581 | x = y = w = 0.964;
|
---|
582 | }
|
---|
583 | }
|
---|
584 |
|
---|
585 | iter = iter + 1; // (Could check iteration count here.)
|
---|
586 |
|
---|
587 | // Look for two consecutive small sub-diagonal elements
|
---|
588 |
|
---|
589 | int m = n-2;
|
---|
590 | while (m >= l) {
|
---|
591 | z = H[m][m];
|
---|
592 | r = x - z;
|
---|
593 | s = y - z;
|
---|
594 | p = (r * s - w) / H[m+1][m] + H[m][m+1];
|
---|
595 | q = H[m+1][m+1] - z - r - s;
|
---|
596 | r = H[m+2][m+1];
|
---|
597 | s = Math.abs(p) + Math.abs(q) + Math.abs(r);
|
---|
598 | p = p / s;
|
---|
599 | q = q / s;
|
---|
600 | r = r / s;
|
---|
601 | if (m == l) {
|
---|
602 | break;
|
---|
603 | }
|
---|
604 | if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) <
|
---|
605 | eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) +
|
---|
606 | Math.abs(H[m+1][m+1])))) {
|
---|
607 | break;
|
---|
608 | }
|
---|
609 | m--;
|
---|
610 | }
|
---|
611 |
|
---|
612 | for (int i = m+2; i <= n; i++) {
|
---|
613 | H[i][i-2] = 0.0;
|
---|
614 | if (i > m+2) {
|
---|
615 | H[i][i-3] = 0.0;
|
---|
616 | }
|
---|
617 | }
|
---|
618 |
|
---|
619 | // Double QR step involving rows l:n and columns m:n
|
---|
620 |
|
---|
621 |
|
---|
622 | for (int k = m; k <= n-1; k++) {
|
---|
623 | boolean notlast = (k != n-1);
|
---|
624 | if (k != m) {
|
---|
625 | p = H[k][k-1];
|
---|
626 | q = H[k+1][k-1];
|
---|
627 | r = (notlast ? H[k+2][k-1] : 0.0);
|
---|
628 | x = Math.abs(p) + Math.abs(q) + Math.abs(r);
|
---|
629 | if (x == 0.0) {
|
---|
630 | continue;
|
---|
631 | }
|
---|
632 | p = p / x;
|
---|
633 | q = q / x;
|
---|
634 | r = r / x;
|
---|
635 | }
|
---|
636 |
|
---|
637 | s = Math.sqrt(p * p + q * q + r * r);
|
---|
638 | if (p < 0) {
|
---|
639 | s = -s;
|
---|
640 | }
|
---|
641 | if (s != 0) {
|
---|
642 | if (k != m) {
|
---|
643 | H[k][k-1] = -s * x;
|
---|
644 | } else if (l != m) {
|
---|
645 | H[k][k-1] = -H[k][k-1];
|
---|
646 | }
|
---|
647 | p = p + s;
|
---|
648 | x = p / s;
|
---|
649 | y = q / s;
|
---|
650 | z = r / s;
|
---|
651 | q = q / p;
|
---|
652 | r = r / p;
|
---|
653 |
|
---|
654 | // Row modification
|
---|
655 |
|
---|
656 | for (int j = k; j < nn; j++) {
|
---|
657 | p = H[k][j] + q * H[k+1][j];
|
---|
658 | if (notlast) {
|
---|
659 | p = p + r * H[k+2][j];
|
---|
660 | H[k+2][j] = H[k+2][j] - p * z;
|
---|
661 | }
|
---|
662 | H[k][j] = H[k][j] - p * x;
|
---|
663 | H[k+1][j] = H[k+1][j] - p * y;
|
---|
664 | }
|
---|
665 |
|
---|
666 | // Column modification
|
---|
667 |
|
---|
668 | for (int i = 0; i <= Math.min(n,k+3); i++) {
|
---|
669 | p = x * H[i][k] + y * H[i][k+1];
|
---|
670 | if (notlast) {
|
---|
671 | p = p + z * H[i][k+2];
|
---|
672 | H[i][k+2] = H[i][k+2] - p * r;
|
---|
673 | }
|
---|
674 | H[i][k] = H[i][k] - p;
|
---|
675 | H[i][k+1] = H[i][k+1] - p * q;
|
---|
676 | }
|
---|
677 |
|
---|
678 | // Accumulate transformations
|
---|
679 |
|
---|
680 | for (int i = low; i <= high; i++) {
|
---|
681 | p = x * V[i][k] + y * V[i][k+1];
|
---|
682 | if (notlast) {
|
---|
683 | p = p + z * V[i][k+2];
|
---|
684 | V[i][k+2] = V[i][k+2] - p * r;
|
---|
685 | }
|
---|
686 | V[i][k] = V[i][k] - p;
|
---|
687 | V[i][k+1] = V[i][k+1] - p * q;
|
---|
688 | }
|
---|
689 | } // (s != 0)
|
---|
690 | } // k loop
|
---|
691 | } // check convergence
|
---|
692 | } // while (n >= low)
|
---|
693 |
|
---|
694 | // Backsubstitute to find vectors of upper triangular form
|
---|
695 |
|
---|
696 | if (norm == 0.0) {
|
---|
697 | return;
|
---|
698 | }
|
---|
699 |
|
---|
700 | for (n = nn-1; n >= 0; n--) {
|
---|
701 | p = d[n];
|
---|
702 | q = e[n];
|
---|
703 |
|
---|
704 | // Real vector
|
---|
705 |
|
---|
706 | if (q == 0) {
|
---|
707 | int l = n;
|
---|
708 | H[n][n] = 1.0;
|
---|
709 | for (int i = n-1; i >= 0; i--) {
|
---|
710 | w = H[i][i] - p;
|
---|
711 | r = 0.0;
|
---|
712 | for (int j = l; j <= n; j++) {
|
---|
713 | r = r + H[i][j] * H[j][n];
|
---|
714 | }
|
---|
715 | if (e[i] < 0.0) {
|
---|
716 | z = w;
|
---|
717 | s = r;
|
---|
718 | } else {
|
---|
719 | l = i;
|
---|
720 | if (e[i] == 0.0) {
|
---|
721 | if (w != 0.0) {
|
---|
722 | H[i][n] = -r / w;
|
---|
723 | } else {
|
---|
724 | H[i][n] = -r / (eps * norm);
|
---|
725 | }
|
---|
726 |
|
---|
727 | // Solve real equations
|
---|
728 |
|
---|
729 | } else {
|
---|
730 | x = H[i][i+1];
|
---|
731 | y = H[i+1][i];
|
---|
732 | q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
|
---|
733 | t = (x * s - z * r) / q;
|
---|
734 | H[i][n] = t;
|
---|
735 | if (Math.abs(x) > Math.abs(z)) {
|
---|
736 | H[i+1][n] = (-r - w * t) / x;
|
---|
737 | } else {
|
---|
738 | H[i+1][n] = (-s - y * t) / z;
|
---|
739 | }
|
---|
740 | }
|
---|
741 |
|
---|
742 | // Overflow control
|
---|
743 |
|
---|
744 | t = Math.abs(H[i][n]);
|
---|
745 | if ((eps * t) * t > 1) {
|
---|
746 | for (int j = i; j <= n; j++) {
|
---|
747 | H[j][n] = H[j][n] / t;
|
---|
748 | }
|
---|
749 | }
|
---|
750 | }
|
---|
751 | }
|
---|
752 |
|
---|
753 | // Complex vector
|
---|
754 |
|
---|
755 | } else if (q < 0) {
|
---|
756 | int l = n-1;
|
---|
757 |
|
---|
758 | // Last vector component imaginary so matrix is triangular
|
---|
759 |
|
---|
760 | if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) {
|
---|
761 | H[n-1][n-1] = q / H[n][n-1];
|
---|
762 | H[n-1][n] = -(H[n][n] - p) / H[n][n-1];
|
---|
763 | } else {
|
---|
764 | cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q);
|
---|
765 | H[n-1][n-1] = cdivr;
|
---|
766 | H[n-1][n] = cdivi;
|
---|
767 | }
|
---|
768 | H[n][n-1] = 0.0;
|
---|
769 | H[n][n] = 1.0;
|
---|
770 | for (int i = n-2; i >= 0; i--) {
|
---|
771 | double ra,sa,vr,vi;
|
---|
772 | ra = 0.0;
|
---|
773 | sa = 0.0;
|
---|
774 | for (int j = l; j <= n; j++) {
|
---|
775 | ra = ra + H[i][j] * H[j][n-1];
|
---|
776 | sa = sa + H[i][j] * H[j][n];
|
---|
777 | }
|
---|
778 | w = H[i][i] - p;
|
---|
779 |
|
---|
780 | if (e[i] < 0.0) {
|
---|
781 | z = w;
|
---|
782 | r = ra;
|
---|
783 | s = sa;
|
---|
784 | } else {
|
---|
785 | l = i;
|
---|
786 | if (e[i] == 0) {
|
---|
787 | cdiv(-ra,-sa,w,q);
|
---|
788 | H[i][n-1] = cdivr;
|
---|
789 | H[i][n] = cdivi;
|
---|
790 | } else {
|
---|
791 |
|
---|
792 | // Solve complex equations
|
---|
793 |
|
---|
794 | x = H[i][i+1];
|
---|
795 | y = H[i+1][i];
|
---|
796 | vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
|
---|
797 | vi = (d[i] - p) * 2.0 * q;
|
---|
798 | if (vr == 0.0 & vi == 0.0) {
|
---|
799 | vr = eps * norm * (Math.abs(w) + Math.abs(q) +
|
---|
800 | Math.abs(x) + Math.abs(y) + Math.abs(z));
|
---|
801 | }
|
---|
802 | cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
|
---|
803 | H[i][n-1] = cdivr;
|
---|
804 | H[i][n] = cdivi;
|
---|
805 | if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
|
---|
806 | H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x;
|
---|
807 | H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x;
|
---|
808 | } else {
|
---|
809 | cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
|
---|
810 | H[i+1][n-1] = cdivr;
|
---|
811 | H[i+1][n] = cdivi;
|
---|
812 | }
|
---|
813 | }
|
---|
814 |
|
---|
815 | // Overflow control
|
---|
816 |
|
---|
817 | t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n]));
|
---|
818 | if ((eps * t) * t > 1) {
|
---|
819 | for (int j = i; j <= n; j++) {
|
---|
820 | H[j][n-1] = H[j][n-1] / t;
|
---|
821 | H[j][n] = H[j][n] / t;
|
---|
822 | }
|
---|
823 | }
|
---|
824 | }
|
---|
825 | }
|
---|
826 | }
|
---|
827 | }
|
---|
828 |
|
---|
829 | // Vectors of isolated roots
|
---|
830 |
|
---|
831 | for (int i = 0; i < nn; i++) {
|
---|
832 | if (i < low | i > high) {
|
---|
833 | for (int j = i; j < nn; j++) {
|
---|
834 | V[i][j] = H[i][j];
|
---|
835 | }
|
---|
836 | }
|
---|
837 | }
|
---|
838 |
|
---|
839 | // Back transformation to get eigenvectors of original matrix
|
---|
840 |
|
---|
841 | for (int j = nn-1; j >= low; j--) {
|
---|
842 | for (int i = low; i <= high; i++) {
|
---|
843 | z = 0.0;
|
---|
844 | for (int k = low; k <= Math.min(j,high); k++) {
|
---|
845 | z = z + V[i][k] * H[k][j];
|
---|
846 | }
|
---|
847 | V[i][j] = z;
|
---|
848 | }
|
---|
849 | }
|
---|
850 | }
|
---|
851 |
|
---|
852 |
|
---|
853 | /* ------------------------
|
---|
854 | Constructor
|
---|
855 | * ------------------------ */
|
---|
856 |
|
---|
857 | /** Check for symmetry, then construct the eigenvalue decomposition
|
---|
858 | Structure to access D and V.
|
---|
859 | @param Arg Square matrix
|
---|
860 | */
|
---|
861 |
|
---|
862 | public EigenvalueDecomposition (Matrix Arg) {
|
---|
863 | double[][] A = Arg.getArray();
|
---|
864 | n = Arg.getColumnDimension();
|
---|
865 | V = new double[n][n];
|
---|
866 | d = new double[n];
|
---|
867 | e = new double[n];
|
---|
868 |
|
---|
869 | issymmetric = true;
|
---|
870 | for (int j = 0; (j < n) & issymmetric; j++) {
|
---|
871 | for (int i = 0; (i < n) & issymmetric; i++) {
|
---|
872 | issymmetric = (A[i][j] == A[j][i]);
|
---|
873 | }
|
---|
874 | }
|
---|
875 |
|
---|
876 | if (issymmetric) {
|
---|
877 | for (int i = 0; i < n; i++) {
|
---|
878 | for (int j = 0; j < n; j++) {
|
---|
879 | V[i][j] = A[i][j];
|
---|
880 | }
|
---|
881 | }
|
---|
882 |
|
---|
883 | // Tridiagonalize.
|
---|
884 | tred2();
|
---|
885 |
|
---|
886 | // Diagonalize.
|
---|
887 | tql2();
|
---|
888 |
|
---|
889 | } else {
|
---|
890 | H = new double[n][n];
|
---|
891 | ort = new double[n];
|
---|
892 |
|
---|
893 | for (int j = 0; j < n; j++) {
|
---|
894 | for (int i = 0; i < n; i++) {
|
---|
895 | H[i][j] = A[i][j];
|
---|
896 | }
|
---|
897 | }
|
---|
898 |
|
---|
899 | // Reduce to Hessenberg form.
|
---|
900 | orthes();
|
---|
901 |
|
---|
902 | // Reduce Hessenberg to real Schur form.
|
---|
903 | hqr2();
|
---|
904 | }
|
---|
905 | }
|
---|
906 |
|
---|
907 | /* ------------------------
|
---|
908 | Public Methods
|
---|
909 | * ------------------------ */
|
---|
910 |
|
---|
911 | /** Return the eigenvector matrix
|
---|
912 | @return V
|
---|
913 | */
|
---|
914 |
|
---|
915 | public Matrix getV () {
|
---|
916 | return new Matrix(V,n,n);
|
---|
917 | }
|
---|
918 |
|
---|
919 | /** Return the real parts of the eigenvalues
|
---|
920 | @return real(diag(D))
|
---|
921 | */
|
---|
922 |
|
---|
923 | public double[] getRealEigenvalues () {
|
---|
924 | return d;
|
---|
925 | }
|
---|
926 |
|
---|
927 | /** Return the imaginary parts of the eigenvalues
|
---|
928 | @return imag(diag(D))
|
---|
929 | */
|
---|
930 |
|
---|
931 | public double[] getImagEigenvalues () {
|
---|
932 | return e;
|
---|
933 | }
|
---|
934 |
|
---|
935 | /** Return the block diagonal eigenvalue matrix
|
---|
936 | @return D
|
---|
937 | */
|
---|
938 |
|
---|
939 | public Matrix getD () {
|
---|
940 | Matrix X = new Matrix(n,n);
|
---|
941 | double[][] D = X.getArray();
|
---|
942 | for (int i = 0; i < n; i++) {
|
---|
943 | for (int j = 0; j < n; j++) {
|
---|
944 | D[i][j] = 0.0;
|
---|
945 | }
|
---|
946 | D[i][i] = d[i];
|
---|
947 | if (e[i] > 0) {
|
---|
948 | D[i][i+1] = e[i];
|
---|
949 | } else if (e[i] < 0) {
|
---|
950 | D[i][i-1] = e[i];
|
---|
951 | }
|
---|
952 | }
|
---|
953 | return X;
|
---|
954 | }
|
---|
955 | private static final long serialVersionUID = 1;
|
---|
956 | }
|
---|