[1] | 1 | package agents.Jama;
|
---|
| 2 | import agents.Jama.util.*;
|
---|
| 3 |
|
---|
| 4 | /** Eigenvalues and eigenvectors of a real matrix.
|
---|
| 5 | <P>
|
---|
| 6 | If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
|
---|
| 7 | diagonal and the eigenvector matrix V is orthogonal.
|
---|
| 8 | I.e. A = V.times(D.times(V.transpose())) and
|
---|
| 9 | V.times(V.transpose()) equals the identity matrix.
|
---|
| 10 | <P>
|
---|
| 11 | If A is not symmetric, then the eigenvalue matrix D is block diagonal
|
---|
| 12 | with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
|
---|
| 13 | lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
|
---|
| 14 | columns of V represent the eigenvectors in the sense that A*V = V*D,
|
---|
| 15 | i.e. A.times(V) equals V.times(D). The matrix V may be badly
|
---|
| 16 | conditioned, or even singular, so the validity of the equation
|
---|
| 17 | A = V*D*inverse(V) depends upon V.cond().
|
---|
| 18 | **/
|
---|
| 19 |
|
---|
| 20 | public class EigenvalueDecomposition implements java.io.Serializable {
|
---|
| 21 |
|
---|
| 22 | /* ------------------------
|
---|
| 23 | Class variables
|
---|
| 24 | * ------------------------ */
|
---|
| 25 |
|
---|
| 26 | /** Row and column dimension (square matrix).
|
---|
| 27 | @serial matrix dimension.
|
---|
| 28 | */
|
---|
| 29 | private int n;
|
---|
| 30 |
|
---|
| 31 | /** Symmetry flag.
|
---|
| 32 | @serial internal symmetry flag.
|
---|
| 33 | */
|
---|
| 34 | private boolean issymmetric;
|
---|
| 35 |
|
---|
| 36 | /** Arrays for internal storage of eigenvalues.
|
---|
| 37 | @serial internal storage of eigenvalues.
|
---|
| 38 | */
|
---|
| 39 | private double[] d, e;
|
---|
| 40 |
|
---|
| 41 | /** Array for internal storage of eigenvectors.
|
---|
| 42 | @serial internal storage of eigenvectors.
|
---|
| 43 | */
|
---|
| 44 | private double[][] V;
|
---|
| 45 |
|
---|
| 46 | /** Array for internal storage of nonsymmetric Hessenberg form.
|
---|
| 47 | @serial internal storage of nonsymmetric Hessenberg form.
|
---|
| 48 | */
|
---|
| 49 | private double[][] H;
|
---|
| 50 |
|
---|
| 51 | /** Working storage for nonsymmetric algorithm.
|
---|
| 52 | @serial working storage for nonsymmetric algorithm.
|
---|
| 53 | */
|
---|
| 54 | private double[] ort;
|
---|
| 55 |
|
---|
| 56 | /* ------------------------
|
---|
| 57 | Private Methods
|
---|
| 58 | * ------------------------ */
|
---|
| 59 |
|
---|
| 60 | // Symmetric Householder reduction to tridiagonal form.
|
---|
| 61 |
|
---|
| 62 | private void tred2 () {
|
---|
| 63 |
|
---|
| 64 | // This is derived from the Algol procedures tred2 by
|
---|
| 65 | // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
---|
| 66 | // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
---|
| 67 | // Fortran subroutine in EISPACK.
|
---|
| 68 |
|
---|
| 69 | for (int j = 0; j < n; j++) {
|
---|
| 70 | d[j] = V[n-1][j];
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | // Householder reduction to tridiagonal form.
|
---|
| 74 |
|
---|
| 75 | for (int i = n-1; i > 0; i--) {
|
---|
| 76 |
|
---|
| 77 | // Scale to avoid under/overflow.
|
---|
| 78 |
|
---|
| 79 | double scale = 0.0;
|
---|
| 80 | double h = 0.0;
|
---|
| 81 | for (int k = 0; k < i; k++) {
|
---|
| 82 | scale = scale + Math.abs(d[k]);
|
---|
| 83 | }
|
---|
| 84 | if (scale == 0.0) {
|
---|
| 85 | e[i] = d[i-1];
|
---|
| 86 | for (int j = 0; j < i; j++) {
|
---|
| 87 | d[j] = V[i-1][j];
|
---|
| 88 | V[i][j] = 0.0;
|
---|
| 89 | V[j][i] = 0.0;
|
---|
| 90 | }
|
---|
| 91 | } else {
|
---|
| 92 |
|
---|
| 93 | // Generate Householder vector.
|
---|
| 94 |
|
---|
| 95 | for (int k = 0; k < i; k++) {
|
---|
| 96 | d[k] /= scale;
|
---|
| 97 | h += d[k] * d[k];
|
---|
| 98 | }
|
---|
| 99 | double f = d[i-1];
|
---|
| 100 | double g = Math.sqrt(h);
|
---|
| 101 | if (f > 0) {
|
---|
| 102 | g = -g;
|
---|
| 103 | }
|
---|
| 104 | e[i] = scale * g;
|
---|
| 105 | h = h - f * g;
|
---|
| 106 | d[i-1] = f - g;
|
---|
| 107 | for (int j = 0; j < i; j++) {
|
---|
| 108 | e[j] = 0.0;
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | // Apply similarity transformation to remaining columns.
|
---|
| 112 |
|
---|
| 113 | for (int j = 0; j < i; j++) {
|
---|
| 114 | f = d[j];
|
---|
| 115 | V[j][i] = f;
|
---|
| 116 | g = e[j] + V[j][j] * f;
|
---|
| 117 | for (int k = j+1; k <= i-1; k++) {
|
---|
| 118 | g += V[k][j] * d[k];
|
---|
| 119 | e[k] += V[k][j] * f;
|
---|
| 120 | }
|
---|
| 121 | e[j] = g;
|
---|
| 122 | }
|
---|
| 123 | f = 0.0;
|
---|
| 124 | for (int j = 0; j < i; j++) {
|
---|
| 125 | e[j] /= h;
|
---|
| 126 | f += e[j] * d[j];
|
---|
| 127 | }
|
---|
| 128 | double hh = f / (h + h);
|
---|
| 129 | for (int j = 0; j < i; j++) {
|
---|
| 130 | e[j] -= hh * d[j];
|
---|
| 131 | }
|
---|
| 132 | for (int j = 0; j < i; j++) {
|
---|
| 133 | f = d[j];
|
---|
| 134 | g = e[j];
|
---|
| 135 | for (int k = j; k <= i-1; k++) {
|
---|
| 136 | V[k][j] -= (f * e[k] + g * d[k]);
|
---|
| 137 | }
|
---|
| 138 | d[j] = V[i-1][j];
|
---|
| 139 | V[i][j] = 0.0;
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
| 142 | d[i] = h;
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | // Accumulate transformations.
|
---|
| 146 |
|
---|
| 147 | for (int i = 0; i < n-1; i++) {
|
---|
| 148 | V[n-1][i] = V[i][i];
|
---|
| 149 | V[i][i] = 1.0;
|
---|
| 150 | double h = d[i+1];
|
---|
| 151 | if (h != 0.0) {
|
---|
| 152 | for (int k = 0; k <= i; k++) {
|
---|
| 153 | d[k] = V[k][i+1] / h;
|
---|
| 154 | }
|
---|
| 155 | for (int j = 0; j <= i; j++) {
|
---|
| 156 | double g = 0.0;
|
---|
| 157 | for (int k = 0; k <= i; k++) {
|
---|
| 158 | g += V[k][i+1] * V[k][j];
|
---|
| 159 | }
|
---|
| 160 | for (int k = 0; k <= i; k++) {
|
---|
| 161 | V[k][j] -= g * d[k];
|
---|
| 162 | }
|
---|
| 163 | }
|
---|
| 164 | }
|
---|
| 165 | for (int k = 0; k <= i; k++) {
|
---|
| 166 | V[k][i+1] = 0.0;
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 | for (int j = 0; j < n; j++) {
|
---|
| 170 | d[j] = V[n-1][j];
|
---|
| 171 | V[n-1][j] = 0.0;
|
---|
| 172 | }
|
---|
| 173 | V[n-1][n-1] = 1.0;
|
---|
| 174 | e[0] = 0.0;
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 | // Symmetric tridiagonal QL algorithm.
|
---|
| 178 |
|
---|
| 179 | private void tql2 () {
|
---|
| 180 |
|
---|
| 181 | // This is derived from the Algol procedures tql2, by
|
---|
| 182 | // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
---|
| 183 | // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
---|
| 184 | // Fortran subroutine in EISPACK.
|
---|
| 185 |
|
---|
| 186 | for (int i = 1; i < n; i++) {
|
---|
| 187 | e[i-1] = e[i];
|
---|
| 188 | }
|
---|
| 189 | e[n-1] = 0.0;
|
---|
| 190 |
|
---|
| 191 | double f = 0.0;
|
---|
| 192 | double tst1 = 0.0;
|
---|
| 193 | double eps = Math.pow(2.0,-52.0);
|
---|
| 194 | for (int l = 0; l < n; l++) {
|
---|
| 195 |
|
---|
| 196 | // Find small subdiagonal element
|
---|
| 197 |
|
---|
| 198 | tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l]));
|
---|
| 199 | int m = l;
|
---|
| 200 | while (m < n) {
|
---|
| 201 | if (Math.abs(e[m]) <= eps*tst1) {
|
---|
| 202 | break;
|
---|
| 203 | }
|
---|
| 204 | m++;
|
---|
| 205 | }
|
---|
| 206 |
|
---|
| 207 | // If m == l, d[l] is an eigenvalue,
|
---|
| 208 | // otherwise, iterate.
|
---|
| 209 |
|
---|
| 210 | if (m > l) {
|
---|
| 211 | int iter = 0;
|
---|
| 212 | do {
|
---|
| 213 | iter = iter + 1; // (Could check iteration count here.)
|
---|
| 214 |
|
---|
| 215 | // Compute implicit shift
|
---|
| 216 |
|
---|
| 217 | double g = d[l];
|
---|
| 218 | double p = (d[l+1] - g) / (2.0 * e[l]);
|
---|
| 219 | double r = Maths.hypot(p,1.0);
|
---|
| 220 | if (p < 0) {
|
---|
| 221 | r = -r;
|
---|
| 222 | }
|
---|
| 223 | d[l] = e[l] / (p + r);
|
---|
| 224 | d[l+1] = e[l] * (p + r);
|
---|
| 225 | double dl1 = d[l+1];
|
---|
| 226 | double h = g - d[l];
|
---|
| 227 | for (int i = l+2; i < n; i++) {
|
---|
| 228 | d[i] -= h;
|
---|
| 229 | }
|
---|
| 230 | f = f + h;
|
---|
| 231 |
|
---|
| 232 | // Implicit QL transformation.
|
---|
| 233 |
|
---|
| 234 | p = d[m];
|
---|
| 235 | double c = 1.0;
|
---|
| 236 | double c2 = c;
|
---|
| 237 | double c3 = c;
|
---|
| 238 | double el1 = e[l+1];
|
---|
| 239 | double s = 0.0;
|
---|
| 240 | double s2 = 0.0;
|
---|
| 241 | for (int i = m-1; i >= l; i--) {
|
---|
| 242 | c3 = c2;
|
---|
| 243 | c2 = c;
|
---|
| 244 | s2 = s;
|
---|
| 245 | g = c * e[i];
|
---|
| 246 | h = c * p;
|
---|
| 247 | r = Maths.hypot(p,e[i]);
|
---|
| 248 | e[i+1] = s * r;
|
---|
| 249 | s = e[i] / r;
|
---|
| 250 | c = p / r;
|
---|
| 251 | p = c * d[i] - s * g;
|
---|
| 252 | d[i+1] = h + s * (c * g + s * d[i]);
|
---|
| 253 |
|
---|
| 254 | // Accumulate transformation.
|
---|
| 255 |
|
---|
| 256 | for (int k = 0; k < n; k++) {
|
---|
| 257 | h = V[k][i+1];
|
---|
| 258 | V[k][i+1] = s * V[k][i] + c * h;
|
---|
| 259 | V[k][i] = c * V[k][i] - s * h;
|
---|
| 260 | }
|
---|
| 261 | }
|
---|
| 262 | p = -s * s2 * c3 * el1 * e[l] / dl1;
|
---|
| 263 | e[l] = s * p;
|
---|
| 264 | d[l] = c * p;
|
---|
| 265 |
|
---|
| 266 | // Check for convergence.
|
---|
| 267 |
|
---|
| 268 | } while (Math.abs(e[l]) > eps*tst1);
|
---|
| 269 | }
|
---|
| 270 | d[l] = d[l] + f;
|
---|
| 271 | e[l] = 0.0;
|
---|
| 272 | }
|
---|
| 273 |
|
---|
| 274 | // Sort eigenvalues and corresponding vectors.
|
---|
| 275 |
|
---|
| 276 | for (int i = 0; i < n-1; i++) {
|
---|
| 277 | int k = i;
|
---|
| 278 | double p = d[i];
|
---|
| 279 | for (int j = i+1; j < n; j++) {
|
---|
| 280 | if (d[j] < p) {
|
---|
| 281 | k = j;
|
---|
| 282 | p = d[j];
|
---|
| 283 | }
|
---|
| 284 | }
|
---|
| 285 | if (k != i) {
|
---|
| 286 | d[k] = d[i];
|
---|
| 287 | d[i] = p;
|
---|
| 288 | for (int j = 0; j < n; j++) {
|
---|
| 289 | p = V[j][i];
|
---|
| 290 | V[j][i] = V[j][k];
|
---|
| 291 | V[j][k] = p;
|
---|
| 292 | }
|
---|
| 293 | }
|
---|
| 294 | }
|
---|
| 295 | }
|
---|
| 296 |
|
---|
| 297 | // Nonsymmetric reduction to Hessenberg form.
|
---|
| 298 |
|
---|
| 299 | private void orthes () {
|
---|
| 300 |
|
---|
| 301 | // This is derived from the Algol procedures orthes and ortran,
|
---|
| 302 | // by Martin and Wilkinson, Handbook for Auto. Comp.,
|
---|
| 303 | // Vol.ii-Linear Algebra, and the corresponding
|
---|
| 304 | // Fortran subroutines in EISPACK.
|
---|
| 305 |
|
---|
| 306 | int low = 0;
|
---|
| 307 | int high = n-1;
|
---|
| 308 |
|
---|
| 309 | for (int m = low+1; m <= high-1; m++) {
|
---|
| 310 |
|
---|
| 311 | // Scale column.
|
---|
| 312 |
|
---|
| 313 | double scale = 0.0;
|
---|
| 314 | for (int i = m; i <= high; i++) {
|
---|
| 315 | scale = scale + Math.abs(H[i][m-1]);
|
---|
| 316 | }
|
---|
| 317 | if (scale != 0.0) {
|
---|
| 318 |
|
---|
| 319 | // Compute Householder transformation.
|
---|
| 320 |
|
---|
| 321 | double h = 0.0;
|
---|
| 322 | for (int i = high; i >= m; i--) {
|
---|
| 323 | ort[i] = H[i][m-1]/scale;
|
---|
| 324 | h += ort[i] * ort[i];
|
---|
| 325 | }
|
---|
| 326 | double g = Math.sqrt(h);
|
---|
| 327 | if (ort[m] > 0) {
|
---|
| 328 | g = -g;
|
---|
| 329 | }
|
---|
| 330 | h = h - ort[m] * g;
|
---|
| 331 | ort[m] = ort[m] - g;
|
---|
| 332 |
|
---|
| 333 | // Apply Householder similarity transformation
|
---|
| 334 | // H = (I-u*u'/h)*H*(I-u*u')/h)
|
---|
| 335 |
|
---|
| 336 | for (int j = m; j < n; j++) {
|
---|
| 337 | double f = 0.0;
|
---|
| 338 | for (int i = high; i >= m; i--) {
|
---|
| 339 | f += ort[i]*H[i][j];
|
---|
| 340 | }
|
---|
| 341 | f = f/h;
|
---|
| 342 | for (int i = m; i <= high; i++) {
|
---|
| 343 | H[i][j] -= f*ort[i];
|
---|
| 344 | }
|
---|
| 345 | }
|
---|
| 346 |
|
---|
| 347 | for (int i = 0; i <= high; i++) {
|
---|
| 348 | double f = 0.0;
|
---|
| 349 | for (int j = high; j >= m; j--) {
|
---|
| 350 | f += ort[j]*H[i][j];
|
---|
| 351 | }
|
---|
| 352 | f = f/h;
|
---|
| 353 | for (int j = m; j <= high; j++) {
|
---|
| 354 | H[i][j] -= f*ort[j];
|
---|
| 355 | }
|
---|
| 356 | }
|
---|
| 357 | ort[m] = scale*ort[m];
|
---|
| 358 | H[m][m-1] = scale*g;
|
---|
| 359 | }
|
---|
| 360 | }
|
---|
| 361 |
|
---|
| 362 | // Accumulate transformations (Algol's ortran).
|
---|
| 363 |
|
---|
| 364 | for (int i = 0; i < n; i++) {
|
---|
| 365 | for (int j = 0; j < n; j++) {
|
---|
| 366 | V[i][j] = (i == j ? 1.0 : 0.0);
|
---|
| 367 | }
|
---|
| 368 | }
|
---|
| 369 |
|
---|
| 370 | for (int m = high-1; m >= low+1; m--) {
|
---|
| 371 | if (H[m][m-1] != 0.0) {
|
---|
| 372 | for (int i = m+1; i <= high; i++) {
|
---|
| 373 | ort[i] = H[i][m-1];
|
---|
| 374 | }
|
---|
| 375 | for (int j = m; j <= high; j++) {
|
---|
| 376 | double g = 0.0;
|
---|
| 377 | for (int i = m; i <= high; i++) {
|
---|
| 378 | g += ort[i] * V[i][j];
|
---|
| 379 | }
|
---|
| 380 | // Double division avoids possible underflow
|
---|
| 381 | g = (g / ort[m]) / H[m][m-1];
|
---|
| 382 | for (int i = m; i <= high; i++) {
|
---|
| 383 | V[i][j] += g * ort[i];
|
---|
| 384 | }
|
---|
| 385 | }
|
---|
| 386 | }
|
---|
| 387 | }
|
---|
| 388 | }
|
---|
| 389 |
|
---|
| 390 |
|
---|
| 391 | // Complex scalar division.
|
---|
| 392 |
|
---|
| 393 | private transient double cdivr, cdivi;
|
---|
| 394 | private void cdiv(double xr, double xi, double yr, double yi) {
|
---|
| 395 | double r,d;
|
---|
| 396 | if (Math.abs(yr) > Math.abs(yi)) {
|
---|
| 397 | r = yi/yr;
|
---|
| 398 | d = yr + r*yi;
|
---|
| 399 | cdivr = (xr + r*xi)/d;
|
---|
| 400 | cdivi = (xi - r*xr)/d;
|
---|
| 401 | } else {
|
---|
| 402 | r = yr/yi;
|
---|
| 403 | d = yi + r*yr;
|
---|
| 404 | cdivr = (r*xr + xi)/d;
|
---|
| 405 | cdivi = (r*xi - xr)/d;
|
---|
| 406 | }
|
---|
| 407 | }
|
---|
| 408 |
|
---|
| 409 |
|
---|
| 410 | // Nonsymmetric reduction from Hessenberg to real Schur form.
|
---|
| 411 |
|
---|
| 412 | private void hqr2 () {
|
---|
| 413 |
|
---|
| 414 | // This is derived from the Algol procedure hqr2,
|
---|
| 415 | // by Martin and Wilkinson, Handbook for Auto. Comp.,
|
---|
| 416 | // Vol.ii-Linear Algebra, and the corresponding
|
---|
| 417 | // Fortran subroutine in EISPACK.
|
---|
| 418 |
|
---|
| 419 | // Initialize
|
---|
| 420 |
|
---|
| 421 | int nn = this.n;
|
---|
| 422 | int n = nn-1;
|
---|
| 423 | int low = 0;
|
---|
| 424 | int high = nn-1;
|
---|
| 425 | double eps = Math.pow(2.0,-52.0);
|
---|
| 426 | double exshift = 0.0;
|
---|
| 427 | double p=0,q=0,r=0,s=0,z=0,t,w,x,y;
|
---|
| 428 |
|
---|
| 429 | // Store roots isolated by balanc and compute matrix norm
|
---|
| 430 |
|
---|
| 431 | double norm = 0.0;
|
---|
| 432 | for (int i = 0; i < nn; i++) {
|
---|
| 433 | if (i < low | i > high) {
|
---|
| 434 | d[i] = H[i][i];
|
---|
| 435 | e[i] = 0.0;
|
---|
| 436 | }
|
---|
| 437 | for (int j = Math.max(i-1,0); j < nn; j++) {
|
---|
| 438 | norm = norm + Math.abs(H[i][j]);
|
---|
| 439 | }
|
---|
| 440 | }
|
---|
| 441 |
|
---|
| 442 | // Outer loop over eigenvalue index
|
---|
| 443 |
|
---|
| 444 | int iter = 0;
|
---|
| 445 | while (n >= low) {
|
---|
| 446 |
|
---|
| 447 | // Look for single small sub-diagonal element
|
---|
| 448 |
|
---|
| 449 | int l = n;
|
---|
| 450 | while (l > low) {
|
---|
| 451 | s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]);
|
---|
| 452 | if (s == 0.0) {
|
---|
| 453 | s = norm;
|
---|
| 454 | }
|
---|
| 455 | if (Math.abs(H[l][l-1]) < eps * s) {
|
---|
| 456 | break;
|
---|
| 457 | }
|
---|
| 458 | l--;
|
---|
| 459 | }
|
---|
| 460 |
|
---|
| 461 | // Check for convergence
|
---|
| 462 | // One root found
|
---|
| 463 |
|
---|
| 464 | if (l == n) {
|
---|
| 465 | H[n][n] = H[n][n] + exshift;
|
---|
| 466 | d[n] = H[n][n];
|
---|
| 467 | e[n] = 0.0;
|
---|
| 468 | n--;
|
---|
| 469 | iter = 0;
|
---|
| 470 |
|
---|
| 471 | // Two roots found
|
---|
| 472 |
|
---|
| 473 | } else if (l == n-1) {
|
---|
| 474 | w = H[n][n-1] * H[n-1][n];
|
---|
| 475 | p = (H[n-1][n-1] - H[n][n]) / 2.0;
|
---|
| 476 | q = p * p + w;
|
---|
| 477 | z = Math.sqrt(Math.abs(q));
|
---|
| 478 | H[n][n] = H[n][n] + exshift;
|
---|
| 479 | H[n-1][n-1] = H[n-1][n-1] + exshift;
|
---|
| 480 | x = H[n][n];
|
---|
| 481 |
|
---|
| 482 | // Real pair
|
---|
| 483 |
|
---|
| 484 | if (q >= 0) {
|
---|
| 485 | if (p >= 0) {
|
---|
| 486 | z = p + z;
|
---|
| 487 | } else {
|
---|
| 488 | z = p - z;
|
---|
| 489 | }
|
---|
| 490 | d[n-1] = x + z;
|
---|
| 491 | d[n] = d[n-1];
|
---|
| 492 | if (z != 0.0) {
|
---|
| 493 | d[n] = x - w / z;
|
---|
| 494 | }
|
---|
| 495 | e[n-1] = 0.0;
|
---|
| 496 | e[n] = 0.0;
|
---|
| 497 | x = H[n][n-1];
|
---|
| 498 | s = Math.abs(x) + Math.abs(z);
|
---|
| 499 | p = x / s;
|
---|
| 500 | q = z / s;
|
---|
| 501 | r = Math.sqrt(p * p+q * q);
|
---|
| 502 | p = p / r;
|
---|
| 503 | q = q / r;
|
---|
| 504 |
|
---|
| 505 | // Row modification
|
---|
| 506 |
|
---|
| 507 | for (int j = n-1; j < nn; j++) {
|
---|
| 508 | z = H[n-1][j];
|
---|
| 509 | H[n-1][j] = q * z + p * H[n][j];
|
---|
| 510 | H[n][j] = q * H[n][j] - p * z;
|
---|
| 511 | }
|
---|
| 512 |
|
---|
| 513 | // Column modification
|
---|
| 514 |
|
---|
| 515 | for (int i = 0; i <= n; i++) {
|
---|
| 516 | z = H[i][n-1];
|
---|
| 517 | H[i][n-1] = q * z + p * H[i][n];
|
---|
| 518 | H[i][n] = q * H[i][n] - p * z;
|
---|
| 519 | }
|
---|
| 520 |
|
---|
| 521 | // Accumulate transformations
|
---|
| 522 |
|
---|
| 523 | for (int i = low; i <= high; i++) {
|
---|
| 524 | z = V[i][n-1];
|
---|
| 525 | V[i][n-1] = q * z + p * V[i][n];
|
---|
| 526 | V[i][n] = q * V[i][n] - p * z;
|
---|
| 527 | }
|
---|
| 528 |
|
---|
| 529 | // Complex pair
|
---|
| 530 |
|
---|
| 531 | } else {
|
---|
| 532 | d[n-1] = x + p;
|
---|
| 533 | d[n] = x + p;
|
---|
| 534 | e[n-1] = z;
|
---|
| 535 | e[n] = -z;
|
---|
| 536 | }
|
---|
| 537 | n = n - 2;
|
---|
| 538 | iter = 0;
|
---|
| 539 |
|
---|
| 540 | // No convergence yet
|
---|
| 541 |
|
---|
| 542 | } else {
|
---|
| 543 |
|
---|
| 544 | // Form shift
|
---|
| 545 |
|
---|
| 546 | x = H[n][n];
|
---|
| 547 | y = 0.0;
|
---|
| 548 | w = 0.0;
|
---|
| 549 | if (l < n) {
|
---|
| 550 | y = H[n-1][n-1];
|
---|
| 551 | w = H[n][n-1] * H[n-1][n];
|
---|
| 552 | }
|
---|
| 553 |
|
---|
| 554 | // Wilkinson's original ad hoc shift
|
---|
| 555 |
|
---|
| 556 | if (iter == 10) {
|
---|
| 557 | exshift += x;
|
---|
| 558 | for (int i = low; i <= n; i++) {
|
---|
| 559 | H[i][i] -= x;
|
---|
| 560 | }
|
---|
| 561 | s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]);
|
---|
| 562 | x = y = 0.75 * s;
|
---|
| 563 | w = -0.4375 * s * s;
|
---|
| 564 | }
|
---|
| 565 |
|
---|
| 566 | // MATLAB's new ad hoc shift
|
---|
| 567 |
|
---|
| 568 | if (iter == 30) {
|
---|
| 569 | s = (y - x) / 2.0;
|
---|
| 570 | s = s * s + w;
|
---|
| 571 | if (s > 0) {
|
---|
| 572 | s = Math.sqrt(s);
|
---|
| 573 | if (y < x) {
|
---|
| 574 | s = -s;
|
---|
| 575 | }
|
---|
| 576 | s = x - w / ((y - x) / 2.0 + s);
|
---|
| 577 | for (int i = low; i <= n; i++) {
|
---|
| 578 | H[i][i] -= s;
|
---|
| 579 | }
|
---|
| 580 | exshift += s;
|
---|
| 581 | x = y = w = 0.964;
|
---|
| 582 | }
|
---|
| 583 | }
|
---|
| 584 |
|
---|
| 585 | iter = iter + 1; // (Could check iteration count here.)
|
---|
| 586 |
|
---|
| 587 | // Look for two consecutive small sub-diagonal elements
|
---|
| 588 |
|
---|
| 589 | int m = n-2;
|
---|
| 590 | while (m >= l) {
|
---|
| 591 | z = H[m][m];
|
---|
| 592 | r = x - z;
|
---|
| 593 | s = y - z;
|
---|
| 594 | p = (r * s - w) / H[m+1][m] + H[m][m+1];
|
---|
| 595 | q = H[m+1][m+1] - z - r - s;
|
---|
| 596 | r = H[m+2][m+1];
|
---|
| 597 | s = Math.abs(p) + Math.abs(q) + Math.abs(r);
|
---|
| 598 | p = p / s;
|
---|
| 599 | q = q / s;
|
---|
| 600 | r = r / s;
|
---|
| 601 | if (m == l) {
|
---|
| 602 | break;
|
---|
| 603 | }
|
---|
| 604 | if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) <
|
---|
| 605 | eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) +
|
---|
| 606 | Math.abs(H[m+1][m+1])))) {
|
---|
| 607 | break;
|
---|
| 608 | }
|
---|
| 609 | m--;
|
---|
| 610 | }
|
---|
| 611 |
|
---|
| 612 | for (int i = m+2; i <= n; i++) {
|
---|
| 613 | H[i][i-2] = 0.0;
|
---|
| 614 | if (i > m+2) {
|
---|
| 615 | H[i][i-3] = 0.0;
|
---|
| 616 | }
|
---|
| 617 | }
|
---|
| 618 |
|
---|
| 619 | // Double QR step involving rows l:n and columns m:n
|
---|
| 620 |
|
---|
| 621 |
|
---|
| 622 | for (int k = m; k <= n-1; k++) {
|
---|
| 623 | boolean notlast = (k != n-1);
|
---|
| 624 | if (k != m) {
|
---|
| 625 | p = H[k][k-1];
|
---|
| 626 | q = H[k+1][k-1];
|
---|
| 627 | r = (notlast ? H[k+2][k-1] : 0.0);
|
---|
| 628 | x = Math.abs(p) + Math.abs(q) + Math.abs(r);
|
---|
| 629 | if (x == 0.0) {
|
---|
| 630 | continue;
|
---|
| 631 | }
|
---|
| 632 | p = p / x;
|
---|
| 633 | q = q / x;
|
---|
| 634 | r = r / x;
|
---|
| 635 | }
|
---|
| 636 |
|
---|
| 637 | s = Math.sqrt(p * p + q * q + r * r);
|
---|
| 638 | if (p < 0) {
|
---|
| 639 | s = -s;
|
---|
| 640 | }
|
---|
| 641 | if (s != 0) {
|
---|
| 642 | if (k != m) {
|
---|
| 643 | H[k][k-1] = -s * x;
|
---|
| 644 | } else if (l != m) {
|
---|
| 645 | H[k][k-1] = -H[k][k-1];
|
---|
| 646 | }
|
---|
| 647 | p = p + s;
|
---|
| 648 | x = p / s;
|
---|
| 649 | y = q / s;
|
---|
| 650 | z = r / s;
|
---|
| 651 | q = q / p;
|
---|
| 652 | r = r / p;
|
---|
| 653 |
|
---|
| 654 | // Row modification
|
---|
| 655 |
|
---|
| 656 | for (int j = k; j < nn; j++) {
|
---|
| 657 | p = H[k][j] + q * H[k+1][j];
|
---|
| 658 | if (notlast) {
|
---|
| 659 | p = p + r * H[k+2][j];
|
---|
| 660 | H[k+2][j] = H[k+2][j] - p * z;
|
---|
| 661 | }
|
---|
| 662 | H[k][j] = H[k][j] - p * x;
|
---|
| 663 | H[k+1][j] = H[k+1][j] - p * y;
|
---|
| 664 | }
|
---|
| 665 |
|
---|
| 666 | // Column modification
|
---|
| 667 |
|
---|
| 668 | for (int i = 0; i <= Math.min(n,k+3); i++) {
|
---|
| 669 | p = x * H[i][k] + y * H[i][k+1];
|
---|
| 670 | if (notlast) {
|
---|
| 671 | p = p + z * H[i][k+2];
|
---|
| 672 | H[i][k+2] = H[i][k+2] - p * r;
|
---|
| 673 | }
|
---|
| 674 | H[i][k] = H[i][k] - p;
|
---|
| 675 | H[i][k+1] = H[i][k+1] - p * q;
|
---|
| 676 | }
|
---|
| 677 |
|
---|
| 678 | // Accumulate transformations
|
---|
| 679 |
|
---|
| 680 | for (int i = low; i <= high; i++) {
|
---|
| 681 | p = x * V[i][k] + y * V[i][k+1];
|
---|
| 682 | if (notlast) {
|
---|
| 683 | p = p + z * V[i][k+2];
|
---|
| 684 | V[i][k+2] = V[i][k+2] - p * r;
|
---|
| 685 | }
|
---|
| 686 | V[i][k] = V[i][k] - p;
|
---|
| 687 | V[i][k+1] = V[i][k+1] - p * q;
|
---|
| 688 | }
|
---|
| 689 | } // (s != 0)
|
---|
| 690 | } // k loop
|
---|
| 691 | } // check convergence
|
---|
| 692 | } // while (n >= low)
|
---|
| 693 |
|
---|
| 694 | // Backsubstitute to find vectors of upper triangular form
|
---|
| 695 |
|
---|
| 696 | if (norm == 0.0) {
|
---|
| 697 | return;
|
---|
| 698 | }
|
---|
| 699 |
|
---|
| 700 | for (n = nn-1; n >= 0; n--) {
|
---|
| 701 | p = d[n];
|
---|
| 702 | q = e[n];
|
---|
| 703 |
|
---|
| 704 | // Real vector
|
---|
| 705 |
|
---|
| 706 | if (q == 0) {
|
---|
| 707 | int l = n;
|
---|
| 708 | H[n][n] = 1.0;
|
---|
| 709 | for (int i = n-1; i >= 0; i--) {
|
---|
| 710 | w = H[i][i] - p;
|
---|
| 711 | r = 0.0;
|
---|
| 712 | for (int j = l; j <= n; j++) {
|
---|
| 713 | r = r + H[i][j] * H[j][n];
|
---|
| 714 | }
|
---|
| 715 | if (e[i] < 0.0) {
|
---|
| 716 | z = w;
|
---|
| 717 | s = r;
|
---|
| 718 | } else {
|
---|
| 719 | l = i;
|
---|
| 720 | if (e[i] == 0.0) {
|
---|
| 721 | if (w != 0.0) {
|
---|
| 722 | H[i][n] = -r / w;
|
---|
| 723 | } else {
|
---|
| 724 | H[i][n] = -r / (eps * norm);
|
---|
| 725 | }
|
---|
| 726 |
|
---|
| 727 | // Solve real equations
|
---|
| 728 |
|
---|
| 729 | } else {
|
---|
| 730 | x = H[i][i+1];
|
---|
| 731 | y = H[i+1][i];
|
---|
| 732 | q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
|
---|
| 733 | t = (x * s - z * r) / q;
|
---|
| 734 | H[i][n] = t;
|
---|
| 735 | if (Math.abs(x) > Math.abs(z)) {
|
---|
| 736 | H[i+1][n] = (-r - w * t) / x;
|
---|
| 737 | } else {
|
---|
| 738 | H[i+1][n] = (-s - y * t) / z;
|
---|
| 739 | }
|
---|
| 740 | }
|
---|
| 741 |
|
---|
| 742 | // Overflow control
|
---|
| 743 |
|
---|
| 744 | t = Math.abs(H[i][n]);
|
---|
| 745 | if ((eps * t) * t > 1) {
|
---|
| 746 | for (int j = i; j <= n; j++) {
|
---|
| 747 | H[j][n] = H[j][n] / t;
|
---|
| 748 | }
|
---|
| 749 | }
|
---|
| 750 | }
|
---|
| 751 | }
|
---|
| 752 |
|
---|
| 753 | // Complex vector
|
---|
| 754 |
|
---|
| 755 | } else if (q < 0) {
|
---|
| 756 | int l = n-1;
|
---|
| 757 |
|
---|
| 758 | // Last vector component imaginary so matrix is triangular
|
---|
| 759 |
|
---|
| 760 | if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) {
|
---|
| 761 | H[n-1][n-1] = q / H[n][n-1];
|
---|
| 762 | H[n-1][n] = -(H[n][n] - p) / H[n][n-1];
|
---|
| 763 | } else {
|
---|
| 764 | cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q);
|
---|
| 765 | H[n-1][n-1] = cdivr;
|
---|
| 766 | H[n-1][n] = cdivi;
|
---|
| 767 | }
|
---|
| 768 | H[n][n-1] = 0.0;
|
---|
| 769 | H[n][n] = 1.0;
|
---|
| 770 | for (int i = n-2; i >= 0; i--) {
|
---|
| 771 | double ra,sa,vr,vi;
|
---|
| 772 | ra = 0.0;
|
---|
| 773 | sa = 0.0;
|
---|
| 774 | for (int j = l; j <= n; j++) {
|
---|
| 775 | ra = ra + H[i][j] * H[j][n-1];
|
---|
| 776 | sa = sa + H[i][j] * H[j][n];
|
---|
| 777 | }
|
---|
| 778 | w = H[i][i] - p;
|
---|
| 779 |
|
---|
| 780 | if (e[i] < 0.0) {
|
---|
| 781 | z = w;
|
---|
| 782 | r = ra;
|
---|
| 783 | s = sa;
|
---|
| 784 | } else {
|
---|
| 785 | l = i;
|
---|
| 786 | if (e[i] == 0) {
|
---|
| 787 | cdiv(-ra,-sa,w,q);
|
---|
| 788 | H[i][n-1] = cdivr;
|
---|
| 789 | H[i][n] = cdivi;
|
---|
| 790 | } else {
|
---|
| 791 |
|
---|
| 792 | // Solve complex equations
|
---|
| 793 |
|
---|
| 794 | x = H[i][i+1];
|
---|
| 795 | y = H[i+1][i];
|
---|
| 796 | vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
|
---|
| 797 | vi = (d[i] - p) * 2.0 * q;
|
---|
| 798 | if (vr == 0.0 & vi == 0.0) {
|
---|
| 799 | vr = eps * norm * (Math.abs(w) + Math.abs(q) +
|
---|
| 800 | Math.abs(x) + Math.abs(y) + Math.abs(z));
|
---|
| 801 | }
|
---|
| 802 | cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
|
---|
| 803 | H[i][n-1] = cdivr;
|
---|
| 804 | H[i][n] = cdivi;
|
---|
| 805 | if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
|
---|
| 806 | H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x;
|
---|
| 807 | H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x;
|
---|
| 808 | } else {
|
---|
| 809 | cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
|
---|
| 810 | H[i+1][n-1] = cdivr;
|
---|
| 811 | H[i+1][n] = cdivi;
|
---|
| 812 | }
|
---|
| 813 | }
|
---|
| 814 |
|
---|
| 815 | // Overflow control
|
---|
| 816 |
|
---|
| 817 | t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n]));
|
---|
| 818 | if ((eps * t) * t > 1) {
|
---|
| 819 | for (int j = i; j <= n; j++) {
|
---|
| 820 | H[j][n-1] = H[j][n-1] / t;
|
---|
| 821 | H[j][n] = H[j][n] / t;
|
---|
| 822 | }
|
---|
| 823 | }
|
---|
| 824 | }
|
---|
| 825 | }
|
---|
| 826 | }
|
---|
| 827 | }
|
---|
| 828 |
|
---|
| 829 | // Vectors of isolated roots
|
---|
| 830 |
|
---|
| 831 | for (int i = 0; i < nn; i++) {
|
---|
| 832 | if (i < low | i > high) {
|
---|
| 833 | for (int j = i; j < nn; j++) {
|
---|
| 834 | V[i][j] = H[i][j];
|
---|
| 835 | }
|
---|
| 836 | }
|
---|
| 837 | }
|
---|
| 838 |
|
---|
| 839 | // Back transformation to get eigenvectors of original matrix
|
---|
| 840 |
|
---|
| 841 | for (int j = nn-1; j >= low; j--) {
|
---|
| 842 | for (int i = low; i <= high; i++) {
|
---|
| 843 | z = 0.0;
|
---|
| 844 | for (int k = low; k <= Math.min(j,high); k++) {
|
---|
| 845 | z = z + V[i][k] * H[k][j];
|
---|
| 846 | }
|
---|
| 847 | V[i][j] = z;
|
---|
| 848 | }
|
---|
| 849 | }
|
---|
| 850 | }
|
---|
| 851 |
|
---|
| 852 |
|
---|
| 853 | /* ------------------------
|
---|
| 854 | Constructor
|
---|
| 855 | * ------------------------ */
|
---|
| 856 |
|
---|
| 857 | /** Check for symmetry, then construct the eigenvalue decomposition
|
---|
| 858 | Structure to access D and V.
|
---|
| 859 | @param Arg Square matrix
|
---|
| 860 | */
|
---|
| 861 |
|
---|
| 862 | public EigenvalueDecomposition (Matrix Arg) {
|
---|
| 863 | double[][] A = Arg.getArray();
|
---|
| 864 | n = Arg.getColumnDimension();
|
---|
| 865 | V = new double[n][n];
|
---|
| 866 | d = new double[n];
|
---|
| 867 | e = new double[n];
|
---|
| 868 |
|
---|
| 869 | issymmetric = true;
|
---|
| 870 | for (int j = 0; (j < n) & issymmetric; j++) {
|
---|
| 871 | for (int i = 0; (i < n) & issymmetric; i++) {
|
---|
| 872 | issymmetric = (A[i][j] == A[j][i]);
|
---|
| 873 | }
|
---|
| 874 | }
|
---|
| 875 |
|
---|
| 876 | if (issymmetric) {
|
---|
| 877 | for (int i = 0; i < n; i++) {
|
---|
| 878 | for (int j = 0; j < n; j++) {
|
---|
| 879 | V[i][j] = A[i][j];
|
---|
| 880 | }
|
---|
| 881 | }
|
---|
| 882 |
|
---|
| 883 | // Tridiagonalize.
|
---|
| 884 | tred2();
|
---|
| 885 |
|
---|
| 886 | // Diagonalize.
|
---|
| 887 | tql2();
|
---|
| 888 |
|
---|
| 889 | } else {
|
---|
| 890 | H = new double[n][n];
|
---|
| 891 | ort = new double[n];
|
---|
| 892 |
|
---|
| 893 | for (int j = 0; j < n; j++) {
|
---|
| 894 | for (int i = 0; i < n; i++) {
|
---|
| 895 | H[i][j] = A[i][j];
|
---|
| 896 | }
|
---|
| 897 | }
|
---|
| 898 |
|
---|
| 899 | // Reduce to Hessenberg form.
|
---|
| 900 | orthes();
|
---|
| 901 |
|
---|
| 902 | // Reduce Hessenberg to real Schur form.
|
---|
| 903 | hqr2();
|
---|
| 904 | }
|
---|
| 905 | }
|
---|
| 906 |
|
---|
| 907 | /* ------------------------
|
---|
| 908 | Public Methods
|
---|
| 909 | * ------------------------ */
|
---|
| 910 |
|
---|
| 911 | /** Return the eigenvector matrix
|
---|
| 912 | @return V
|
---|
| 913 | */
|
---|
| 914 |
|
---|
| 915 | public Matrix getV () {
|
---|
| 916 | return new Matrix(V,n,n);
|
---|
| 917 | }
|
---|
| 918 |
|
---|
| 919 | /** Return the real parts of the eigenvalues
|
---|
| 920 | @return real(diag(D))
|
---|
| 921 | */
|
---|
| 922 |
|
---|
| 923 | public double[] getRealEigenvalues () {
|
---|
| 924 | return d;
|
---|
| 925 | }
|
---|
| 926 |
|
---|
| 927 | /** Return the imaginary parts of the eigenvalues
|
---|
| 928 | @return imag(diag(D))
|
---|
| 929 | */
|
---|
| 930 |
|
---|
| 931 | public double[] getImagEigenvalues () {
|
---|
| 932 | return e;
|
---|
| 933 | }
|
---|
| 934 |
|
---|
| 935 | /** Return the block diagonal eigenvalue matrix
|
---|
| 936 | @return D
|
---|
| 937 | */
|
---|
| 938 |
|
---|
| 939 | public Matrix getD () {
|
---|
| 940 | Matrix X = new Matrix(n,n);
|
---|
| 941 | double[][] D = X.getArray();
|
---|
| 942 | for (int i = 0; i < n; i++) {
|
---|
| 943 | for (int j = 0; j < n; j++) {
|
---|
| 944 | D[i][j] = 0.0;
|
---|
| 945 | }
|
---|
| 946 | D[i][i] = d[i];
|
---|
| 947 | if (e[i] > 0) {
|
---|
| 948 | D[i][i+1] = e[i];
|
---|
| 949 | } else if (e[i] < 0) {
|
---|
| 950 | D[i][i-1] = e[i];
|
---|
| 951 | }
|
---|
| 952 | }
|
---|
| 953 | return X;
|
---|
| 954 | }
|
---|
| 955 | private static final long serialVersionUID = 1;
|
---|
| 956 | }
|
---|